The KASH Reference Manual

(still) with TeX-inline notation

 


AbelianDualGroup

Returns the dual group of a given finite abelian group.

Syntax:

d := AbelianDualGroup(g);

groups
  g, d  

 


AbelianDualHom

Creates the dual homomorphism of a given homomorphism between two finite Abelian groups.

Syntax:

dualhom := AbelianDualHom(hom);

homomorphism
  hom  
homomorphism from g1 to g2

See also:  AbelianGroupHomCreate, AbelianHomGroup

 


AbelianFieldToRCF

Computes the data neccessary to get an abelian field as a Ray Class Field.

Syntax:

rc := AbelianFieldToRCF(o [, I]);

list
  rc  
[ ideal, inf, relations ]
order
  o  
of an abelian field with known automorphisms
ideal
  I  
of the coef. ring of o. Must be a multiple of the conductor.

 


AbelianFixPointGroup

Computes the fix point group of endomorphisms.

Syntax:

f := AbelianFixPointGroup(hom);
f := AbelianFixPointGroup(L);

group
  f  
homomorphism
  hom  
list
  L  
list of homomorphisms

 


AbelianGroupBasis

Returns a basis of a finite abelian group.

Syntax:

L := AbelianGroupBasis(g [, exp]);

group
  g  
list
  L  
list of basis elements of g
boolean
  exp  

See also:  AbelianGroupMinNumberGenerators

 


AbelianGroupCanonicalQuotient

Returns the canonical quotient group of a homomorphism.

Syntax:

q := AbelianGroupCanonicalQuotient(hom);

group
  q  
homomorphism
  hom  

See also:  AbelianGroupHomImage, AbelianGroupHomKernel, AbelianQuotientGroup

 


AbelianGroupCreate

Creates a finite abelian group via a given relation matrix.

Syntax:

g := AbelianGroupCreate(mat);
g := AbelianGroupCreate(mat, "*");
g := AbelianGroupCreate(mat, "+");

group
  g  
matrix or list of lists
  mat  

See also:  AbelianSubGroup, AbelianGroupSmithCreate

 


AbelianGroupCyclicFactors

Returns cyclic factors and their orders from the Smith normal form.

Syntax:

L := AbelianGroupCyclicFactors(g);

group
  g  
list
  L  
list of cyclic factors of g

See also:  AbelianGroupSmithCreate

 


AbelianGroupDirectProduct

Returns the direct product of two finite abelian groups.

Syntax:

d := AbelianGroupDirectProduct(g1, g2);
d := AbelianGroupDirectProduct(L);

groups
  g1, g2, d  
list
  L  
list of groups

 


AbelianGroupDiscreteExp

Returns the object corresponding to a representation in a group.

Syntax:

b := AbelianGroupDiscreteExp(a);

group
  g  
group element
  a  
representation of b in the abstract group g
object or boolean
  b  

See also:  AbelianGroupDiscreteLog

 


AbelianGroupDiscreteLog

Returns the representation of an object in a group.

Syntax:

a := AbelianGroupDiscreteLog(g, b);

group
  g  
group element
  a  
representation of b in the abstract group g
object
  b  

See also:  AbelianGroupDiscreteExp

 


AbelianGroupEltCreate

Creates an element of a group.

Syntax:

elt := AbelianGroupEltCreate(g, vector);

group element
  elt  
group
  g  
list or matrix with one row of integers
  vector  

See also:  AbelianGroupEltReduce

 


AbelianGroupEltMove

Moves an element from a subgroup into a supergroup.

Syntax:

elt2 := AbelianGroupEltMove(elt1, g);

group
  g  
group element
  elt1  
group element
  elt2  
element of the group g

 


AbelianGroupEltOrder

Returns the order of an element.

Syntax:

a := AbelianGroupEltOrder(elt);

group element
  elt  
integer
  a  

See also:  AbelianGroupOrder, AbelianGroupEltCreate

 


AbelianGroupEltRandom

Generates a random element of an abelian group.

Syntax:

e := AbelianGroupEltRandom(G);

AbelianGroupElt
  e  
AbelianGroup
  G  

 


AbelianGroupEltReduce

Returns a reduced representation of a group element.

Syntax:

elt2 := AbelianGroupEltReduce(elt1 [, positive]);

group element
  elt1  
group element
  elt2  
reduced representation
boolean
  positive  

 


AbelianGroupEnumInit

Generates a environment for the enumeration of all elements of a finite abelian group G.

Syntax:

s := AbelianGroupEnumInit(G [, "gen"]);

record
  s  
AbelianGroup
  G  
arbitray
  gen  
if present, only a set of generators will be enumerated.

See also:  AbelianGroupEnumNext

 


AbelianGroupEnumNext

Computes "the next" element of an abelian group.

Syntax:

flag := AbelianGroupEnumNext(s);

boolean
  flag  
true iff there is a valid element in s
record
  s  
generated by AbelianGroupEnumInit
AbelianGroupElt
  s.elt  

See also:  AbelianGroupEnumInit

 


AbelianGroupEqual

Tests if two groups are equal.

Syntax:

test := AbelianGroupEqual(g1, g2);

groups
  g1, g2  
boolean
  test  

 


AbelianGroupExponent

Returns the exponent of a group.

Syntax:

a := AbelianGroupExponent(g);

group
  g  
integer
  a  

See also:  AbelianGroupOrder, AbelianGroupEltOrder

 


AbelianGroupGenerators

Returns generators of a group.

Syntax:

L := AbelianGroupGenerators(g [, exp]);

group
  g  
list
  L  
list of generators of g
boolean
  exp  

See also:  AbelianGroupNumberGenerators, AbelianGroupBasis

 


AbelianGroupHomCreate

Creates the homomorphism corresponding to a matrix.

Syntax:

hom := AbelianGroupHomCreate(g1, g2, mat [, check]);
hom := AbelianGroupHomCreate(g1, g2, mat, [matinv]);

groups
  g1, g2  
homomorphism
  hom  
homomorphism from g1 to g2
boolean
  check  
matrix
  matinv  

See also:  AbelianHomGroup

 


AbelianGroupHomImage

Returns the image of a group homomorphism.

Syntax:

g := AbelianGroupHomImage(hom [, generators]);

group
  g  
homomorphism
  hom  
boolean
  generators  

See also:  AbelianGroupKernel, AbelianQuotientGroup, AbelianGroupCanonicalQuotient

 


AbelianGroupHomKernel

Returns the kernel of a group homomorphism.

Syntax:

g := AbelianGroupHomKernel(hom [,generators]);

group
  g  
homomorphism
  hom  
boolean
  generators  

See also:  AbelianGroupHomImage, AbelianQuotientGroup, AbelianGroupCanonicalQuotient

 


AbelianGroupIndex

Returns the index of a subgroup in a group.

Syntax:

a := AbelianGroupIndex(g, s);

group
  g  
group
  s  
subgroup of g
integer
  a  

See also:  AbelianSubGroup, AbelianGroupOrder

 


AbelianGroupIntersect

Returns the intersection of two groups.

Syntax:

g := AbelianGroupIntersect(g1, g2);

groups
  g, g1, g2  

See also:  AbelianGroupUnite

 


AbelianGroupIsAut

Tests whether a function is a group automorphism.

Syntax:

L := AbelianGroupIsAut(hom [, check]);

homomorphism
  hom  
boolean
  check  
list
  L  

 


AbelianGroupIsSub

Tests whether s is a subgroup of g.

Syntax:

test := AbelianGroupIsSub(s, g);

groups
  g, s  
boolean
  test  

See also:  AbelianSubGroup

 


AbelianGroupMinNumberGenerators

Returns the minimal number of generators of a group.

Syntax:

a := AbelianGroupMinNumberGenerators(g);

group
  g  
integer
  a  

See also:  AbelianGroupBasis

 


AbelianGroupMultiHomCreate

Creates a multilinear mapping.

Syntax:

f := AbelianGroupMultiHomCreate(d, g, t, mat);

group
  d, g, t  
matrix or list of lists
  mat  

See also:  AbelianMultiHomGroup

 


AbelianGroupName

Gives a name to a group.

Syntax:

AbelianGroupName(g, s);

group
  g  
string
  s  
name of g

See also:  AbelianGroupPrintLevel

 


AbelianGroupNumberGenerators

Returns the number of generators.

Syntax:

a := AbelianGroupNumberGenerators(g);

group
  g  
integer
  a  

See also:  AbelianGroupGenerators

 


AbelianGroupOrder

Returns the order of a group.

Syntax:

a := AbelianGroupOrder(g);

group
  g  
integer
  a  

See also:  AbelianGroupExponent

 


AbelianGroupPrintLevel

Sets printlevel.

Syntax:

AbelianGroupPrintLevel := a;

integer
  a  

 


AbelianGroupSmithCreate

Returns the smith normal form of a group.

Syntax:

s := AbelianGroupSmithCreate(g [, generators]);

group
  g, s  
boolean
  generators  

 


AbelianGroupTensorProduct

Returns the tensor product of groups.

Syntax:

t := AbelianGroupTensorProduct(L);

group
  t  
list
  L  
list of groups

 


AbelianGroupUnite

Returns the smallest group containing two given groups.

Syntax:

g := AbelianGroupUnite(g1, g2);

groups
  g, g1, g2  

See also:  AbelianGroupIntersect

 


AbelianHomGroup

Returns the group consisting of homomorphisms between two groups.

Syntax:

h := AbelianHomGroup(g1, g2);

groups
  g1, g2, h  

See also:  AbelianGroupHomCreate

 


AbelianMultiHomGroup

Computes the group of multilinear mappings.

Syntax:

L := AbelianMultiHomGroup([g_{1}, … ,g_{n}], h);

groups
   g_{1}, … , g_{n}, h  
list
  L  

See also:  AbelianGroupMultiHomCreate

 


AbelianQuotientGroup

Returns the quotient of a group and a subgroup.

Syntax:

q := AbelianQuotientGroup(g, s);

groups
  g, q  
group
  s  
subgroup of g

See also:  AbelianGroupCanonicalQuotient

 


AbelianRayClassGroupAutoCreate

Given a field automorphism, this function generates the corresponding automorphism of abelian groups.

Syntax:

aut := AbelianRayClassGroupAutoCreate(G, sigma);

AbelianGroupHom
  aut  
AbelianGroup
  G  
must be RayClassGroupToAbelianGroup
KASH function
  sigma  
acting on ideals

 


AbelianRayGroupImbed

Imbeds a ClassGroup into a RayClassGroup.

Syntax:

dualhom := AbelianRayGroupImbed(G,g);

abstract rayclassgroup
  G  
abstract classgroup
  g  

See also:  RayClassGroupToAbelianGroup

 


AbelianSubGroup

Creates a subgroup.

Syntax:

s := AbelianSubGroup([g,] L [, generators]);
s := AbelianSubGroup(g, mat [, generators]);

groups
  g, s  
list
  L  
list of elements of g or list of exponent vectors
matrix
  mat  
boolean
  generators  

 


Abs

Returns the absolute value of a number.

Syntax:

a := Abs(x);

complex
  a  
complex
  x  

 


Alff

Creates an algebraic function field F/k(T).

Syntax:

F := Alff(f);

algebraic function field
  F  
polynomial
  f  

See also:  AlffInit, AlffOrders, AlffGenus, AlffPlaceSplit

 


AlffCanonicalDivisor

Computes a canonical divisor of an algebraic function field F/k.

Syntax:

W := AlffCanonicalDivisor(F);

alff divisor
  W  
algebraic function field
  F  

See also:  AlffDifferentDeg, AlffDifferent, AlffDiffDivisor, AlffDivisorLDim, AlffGenus, AlffInit, AlffOrders

 


AlffClassGroup

Computes the structure of the divisor class group of a global function field.

Syntax:

Cl := AlffClassGroup( F [, b ] [, A ] [, "fast" ] );

list
  Cl  
of integer and list (class group structure)
alff
  F  
global function field
integer
  b  
bound for degree of places to be used
alff divisor
  A  
for reduction

See also:  AlffClassGroupGenBound, AlffClassNumberApprox, AlffDivisorDegOne, AlffLPoly, Alff, AlffInit, AlffOrders

 


AlffClassGroupGenBound

Returns a bound for the degree of prime divisors which generate the divisor class group.

Syntax:

b := AlffClassGroupGenBound(q, g);
b := AlffClassGroupGenBound(F);

integer
  b  
generation bound
integers
  q, g  
exact constant field size and genus of F
alff
  F  
global function field

See also:  AlffClassGroupGenBoundStrong, AlffClassGroupProdBound, AlffClassGroup, AlffPlacesNum, AlffInit, AlffOrders, AlffGenus

 


AlffClassGroupGenBoundStrong

Return a bound for the degree of prime divisors which generate the divisor class group.

Syntax:

b := AlffClassGroupGenBoundStrong(F);

integer
  b  
generation bound
alff
  F  
global function field

See also:  AlffClassGroupGenBound, AlffClassGroupProdBound, AlffClassGroup, AlffInit, AlffOrders

 


AlffClassGroupGens

Computes generators of the divisor class group of a global function field.

Syntax:

L := AlffClassGroupGens( F, [ b, ] [ A, ] [ "fast" ] );

list
  L  
of generating divisors
alff
  F  
global function field
integer
  b  
bound for degree of places to be used
alff divisor
  A  
for reduction

See also:  AlffClassGroup, AlffClassGroupGenBound, AlffClassGroupGenBoundStrongAlffDivisorDegOne, AlffInit, AlffOrders

 


AlffClassGroupPRank

Computes the p-rank of the class group of a global function field.

Syntax:

s := AlffClassGroupPRank(F);

integer
  s  
global function field
  F  

See also:  AlffHasseWittInvariant

 


AlffClassNumberApprox

Compute an approximation of the class number of a global function field.

Syntax:

hbar := AlffClassNumberApprox(F, b);

real
  hbar  
approximated class number
alff
  F  
global function field
integer
  b  
bound

See also:  AlffClassNumberApproxBound, AlffClassGroup, AlffLPoly, AlffInit, AlffOrders

 


AlffClassNumberApproxBound

Return a bound for the prime divisors to be considered for the approximation of the class number of a global function field.

Syntax:

b := AlffClassNumberApproxBound(q, g, a);
b := AlffClassNumberApproxBound(F, a);

integer
  b  
approximation bound
integers
  q, g  
exact constant field size and genus
alff
  F  
global function field
real
  a  
\in R^{> 1}

See also:  AlffClassNumberApprox, AlffClassGroup, AlffLPoly, AlffInit, AlffOrders

 


AlffConstField

Returns the constant field k of definition of an algebraic function field F/k(T).

Syntax:

k := AlffConstField(F);

field
  k  
algebraic function field
  F  

See also:  AlffDimExactConstField

 


AlffConstFieldSize

Returns the size of the constant field of definition of a global function field.

Syntax:

q := AlffConstFieldSize(F);

integer
  q  
size of constant field
algebraic function field
  F  

See also:  AlffConstField, AlffIsGlobal, Characteristic

 


AlffDeg

Returns the degree of the extension F/k(T).

Syntax:

n := AlffDeg(F);

integer
  n  
algebraic function field
  F  

See also:  AlffOrderPoly

 


AlffDiff

Returns the exact differential dh of an alff element h.

Syntax:

dh := AlffDiff(h);

alff differential
  dh  
alff element
  h  

See also:  AlffDiffDivisor, Alff

 


AlffDiffAlff

Returns the algebraic function field of an alff differential.

Syntax:

F := AlffDiffAlff(hdx);

algebraic function field
  F  
alff differential
  hdx  

See also:  AlffDiff

 


AlffDiffCartier

Applies the Cartier operator.

Syntax:

hdx := AlffDiffCartier(gdx, r);

differentials
  hdx, gdx  
integer
  r  
number of iterated applications

See also:  AlffDiff

 


AlffDiffCartierMatrix

Computes a representation matrix of the Cartier operator.

Syntax:

M := AlffDiffCartierMatrix(F, r);

matrix
  M  
global function field
  F  
integer
  r  
C is r times applied.

See also:  AlffDiff

 


AlffDiffDivisor

Computes the divisor of an alff differential hdT.

Syntax:

D := AlffDiffDivisor(hdT);

alff divisor
  D  
alff differential
  hdT  

See also:  AlffDivisor, AlffDiffSpace

 


AlffDiffFirstKind

Computes a basis for the differentials of the first kind (holomorphic differentials) of an algebraic function field F/k.

Syntax:

B := AlffDiffFirstKind(F);

list
  B  
of alff differentials
algebraic function field
  F  

See also:  AlffDiffSpace, AlffDiffDivisor

 


AlffDiffResiduum

Computes the residuum of a differential.

Syntax:

r := AlffDiffResiduum(P, hdT);

field element
  r  
the residuum of hdT at P
alff place
  P  
alff differential
  hdT  

See also:  AlffDiffDivisor, AlffDiffValuation, AlffEltResiduum

 


AlffDiffSpace

Computes a basis for the space of Weil differentials Omega(D) := {\; omega \in Omega(F/k) \;|\; (omega) >= D \;} for a divisor D of an algebraic function field F/k.

Syntax:

B := AlffDiffSpace(D);

list
  B  
of alff differentials
alff divisor
  D  

See also:  AlffDiffFirstKind, AlffDiffDivisor

 


AlffDiffValuation

Returns the order of a non zero alff differential at a place.

Syntax:

v := AlffDiffValuation(p, fdx);

integer
  v  
alff place
  p  
alff differential
  fdx  

See also:  AlffDiffDivisor, AlffDiff

 


AlffDifferent

Computes the different of an algebraic function field extension F/ k(T).

Syntax:

D := AlffDifferent(F);

alff divisor
  D  
algebraic function field
  F  

See also:  AlffDifferentDeg, AlffCanonicalDivisor, AlffDiffDivisor

 


AlffDifferentDeg

Computes the degree of the different of an algebraic function field extension F/ k(T).

Syntax:

d := AlffDifferentDeg(F);

integer
  d  
algebraic function field
  F  

See also:  AlffDifferent, AlffCanonicalDivisor, AlffDiffDivisor

 


AlffDifferentiation

Computes higher differentiations of function field elements.

Syntax:

b := AlffDifferentiation(p, m, a);

alff element
  b  
m-times differentiated element
integer
  m  
alff place or element
  p  
alff element
  a  
element to differentiate

See also:  AlffDiff, AlffWronskian, AlffRamDivisor

 


AlffDimExactConstField

Returns the k-dimension of the exact constant field \widetilde k of an algebraic function field F/k(T).

Syntax:

l := AlffDimExactConstField(F);

integer
  l  
algebraic function field
  F  

See also:  AlffConstField

 


AlffDivisor

Creation of divisors.

Syntax:

D := AlffDivisor(F);
D := AlffDivisor(a);
D := AlffDivisor(P);
D := AlffDivisor(I, J);
D := AlffDivisor(u, v);

alff divisor
  D  
algebraic function field
  F  
alff order element
  a  
alff place
  P  
alff order ideal
  I  
of the finite maximal order
alff order ideal
  J  
of the infinite maximal order
alff order elements
  u,v  

See also:  AlffPlaceSplit, AlffIdealFactor, AlffEltMove, Alff

 


AlffDivisorAlff

Given a divisor this function returns the algebraic function field it belongs to.

Syntax:

F := AlffDivisorAlff(D);

algebraic function field
  F  
alff divisor
  D  

See also:  AlffOrderAlff, AlffPlaceAlff

 


AlffDivisorClassRep

Find the class representation of a divisor class in given generators.

Syntax:

L := AlffDivisorClassRep(D);

list
  L  
exponents
alff divisor
  D  

See also:  AlffClassGroupGens, AlffClassGroup, AlffInit, AlffOrders

 


AlffDivisorDeg

Degree of a divisor.

Syntax:

d := AlffDivisorDeg(D);

integer
  d  
alff divisor
  D  

See also:  AlffPlaceDeg, AlffDivisorLDim, AlffGenus

 


AlffDivisorDegOne

Computes a divisor of degree one for a global function field.

Syntax:

D := AlffDivisorDegOne(F);

alff divisor
  D  
of degree one
global function field
  F  

See also:  AlffPlaces, AlffPlacesDegOne

 


AlffDivisorDen

Returns the denominator of an alff divisor.

Syntax:

D2 := AlffDivisorDen(D);

alff divisor
  D2  
alff divisor
  D  

See also:  AlffDivisorNum

 


AlffDivisorIdeals

Divisor corresponding ideals of maximal orders.

Syntax:

L := AlffDivisorIdeals(D);

list
  L  
of finite and infinite ideals
alff divisor
  D  

See also:  AlffDivisor

 


AlffDivisorLBasis

Computes a basis of a Riemann-Roch space

Syntax:

B := AlffDivisorLBasis(D);

list
  B  
of basis elements
alff divisor
  D  

See also:  AlffDivisorLBasisShort, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff

 


AlffDivisorLBasis

Computes a basis of a Riemann-Roch space

Syntax:

B := AlffDivisorLBasis(D);

list
  B  
of basis elements
alff divisor
  D  

See also:  AlffDivisorLBasisShort, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff

 


AlffDivisorLBasisShort

Computes a basis of a Riemann-Roch space.

Syntax:

B := AlffDivisorLBasisShort(D);

list
  B  
of pairs of basis elements b_i and degree bounds d_i
alff divisor
  D  

See also:  AlffDivisorLBasis, AlffDivisorLDim, AlffDivisorLIndex, AlffDivisorDeg, AlffGenus, Alff

 


AlffDivisorLDim

Dimension of a Riemann-Roch space.

Syntax:

l := AlffDivisorLDim(D);

integer
  l  
alff divisor
  D  

See also:  AlffDivisorLBasis, AlffDivisorLIndex, AlffDivisorDeg, AlffGenus, Alff

 


AlffDivisorLIndex

Index of speciality of alff divisors.

Syntax:

i := AlffDivisorLIndex(D);

integer
  i  
divisor
  D  

See also:  AlffDivisorLBasis, AlffDivisorLDim, AlffDivisorDeg, AlffGenus, Alff

 


AlffDivisorLargeLBasisShort

Computes a basis of a large divisor.

Syntax:

B := AlffDivisorLargeLBasis(D, "raw");

list
  B  
the short basis
alff divisor
  D  

See also:  AlffDivisorLargeLDim, AlffDivisorLBasisShort, AlffDivisorReduction, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff

 


AlffDivisorLargeLDim

Computes the dimension of a large divisor.

Syntax:

d := AlffDivisorLargeLDim(D);

integer
  d  
the dimension
alff divisor
  D  

See also:  AlffDivisorLargeLBasisShort, AlffDivisorLBasisShort, AlffDivisorReduction, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff

 


AlffDivisorNorm

Computes the norm of a divisor.

Syntax:

N := AlffDivisorNorm(D);

qf element
  N  
alff divisor
  D  

See also:  AlffEltGenT, AlffIdealNorm

 


AlffDivisorNum

Returns the numerator of an alff divisor.

Syntax:

D1 := AlffDivisorNum(D);

alff divisor
  D1  
alff divisor
  D  

See also:  AlffDivisorDen

 


AlffDivisorPlaces

Places and exponents of an alff divisor.

Syntax:

L := AlffDivisorPlaces(D);

list
  L  
of lists of alff places and integers
alff divisor
  D  

See also:  AlffDivisor

 


AlffDivisorReduction

Computes a reduced divisor.

Syntax:

L := AlffDivisorReduction(D);
L := AlffDivisorReduction(D, A);

list
  L  
as above
alff divisor
  D  
to reduce
alff divisor
  D  

See also:  AlffDivisorLargeLDim

 


AlffDivisorSupp

Returns the support of a divisor as a list of places.

Syntax:

L := AlffDivisorSupp(D);

list
  L  
of places
alff divisor
  D  

See also:  AlffDivisorPlaces

 


AlffDivisorsSmoothNum

Compute the number of (n, m)-smooth divisors.

Syntax:

N := AlffDivisorsSmoothNum(n, m, P);

integer
  N  
number of (n, m)-smooth divisors
integers
  n, m  
list
  P  
of integers

See also:  AlffInit, AlffOrders, AlffPlacesNum

 


AlffDivisorsSmoothRatio

Return a ratio of numbers of smooth divisors times a number of places.

Syntax:

r := AlffDivisorsSmoothRatio(n, m, P);

real
  r  
smoothness ratio
integers
  n, m  
list
  P  
of integers

See also:  AlffDivisorsSmoothNum, AlffInit, AlffOrders, AlffPlacesNum

 


AlffEllipticFunField

Creates an elliptic algebraic function field F/k.

Syntax:

F := AlffEllipticFunField(k, L);

algebraic function field
  F  
field
  k  
list
  L  

 


AlffElt

Creates an element of an algebraic function field F/k(T).

Syntax:

a := AlffElt(o, s);
a := AlffElt(o, b);
a := AlffElt(o, L);

algebraic function field element
  a  
algebraic function field order
  o  
finite field element, rational or order element
  s  
a constant
polynomial or quotient field element
  b  
a rational function
list
  L  
of above s or b of length n

See also:  Alff, AlffOrderEqFinite, AlffOrderEqInfty, AlffOrderMaxFinite, AlffOrderMaxInfty

 


AlffEltAlff

Returns the algebraic function field of an alff element.

Syntax:

F := AlffEltAlff(a);

alff
  F  
alff element
  a  

See also:  AlffEltOrder

 


AlffEltApprox

Computes an approximating element of an algebraic function field F.

Syntax:

alpha := AlffEltApprox(S, Lambda, A [,a]);

element
  alpha  
of the algebraic function field F
list
  S  
of places of F
alff divisor
  A  
list
  a  
of elements of F

 


AlffEltBstar

Computes B^*(a) for a global function field element a.

Syntax:

q := AlffEltBstar(a);

rational
  q  
global function field element
  a  

 


AlffEltCharPoly

Returns the characteric polynomial of an algebraic function field element.

Syntax:

p := AlffEltMinPoly(a);

polynomial
  p  
alff element
  a  

See also:  AlffEltCharPoly

 


AlffEltDen

Returns the denominator of an algebraic function field element.

Syntax:

d := AlffEltDen(a);

quotient field element or polynomial
  d  
algebraic function field element
  a  

See also:  AlffEltNum, AlffEltToList, Num, Den

 


AlffEltEval

Evaluates an algebraic function at a place.

Syntax:

b := AlffEltEval(P, a);

field element
  b  
value of a at P
alff place
  P  
alff element
  a  

See also:  AlffResidueField, AlffEltLift, AlffEltValuation

 


AlffEltGenT

Returns the indeterminate T as maximal order element.

Syntax:

T := AlffEltGenT(F);

algebraic function field
  F  
alff element
  T  

See also:  AlffEltGenY, Alff, AlffOrderMaxFinite

 


AlffEltGenY

Returns the indeterminate y as finite maximal order element.

Syntax:

Y := AlffEltGenY(F);

algebraic function field
  F  
alff element
  Y  

See also:  AlffEltGenT, Alff, AlffOrderMaxFinite

 


AlffEltInftyVals

Computes the inequivalent valuations of a global function field element at infinity.

Syntax:

L := AlffEltInftyVals(a);

list
  L  
global function field element
  a  

See also:  AlffPlaceSplit, AlffSignature, Alff

 


AlffEltIsInIdeal

Checks whether a function field element is in an ideal.

Syntax:

b := AlffEltIsInIdeal(a, I);

boolean
  b  
alff order element
  a  
alff order ideal
  I  

 


AlffEltMin

Returns the denominator d of an alff element a from a form of the representation matrix of da \in o.

Syntax:

m := AlffEltMin(a);

coefficient ring element
  m  
alff element
  a  

See also:  AlffEltRepMat

 


AlffEltMinPoly

Returns the minimal polynomial of an algebraic function field element.

Syntax:

p := AlffEltMinPoly(a);

polynomial
  p  
alff element
  a  

See also:  AlffEltCharPoly

 


AlffEltMove

Moves an algebraic function field element between orders.

Syntax:

a := AlffEltMove(b, o);

algebraic function field elements
  a,b  
algebraic function field order
  o  

 


AlffEltNewtonLift

Lifts an algebraic element with the Newton lifting method.

Syntax:

beta:=AlffEltNewtonLift(o, g, alpha, p, k, den);

algebraic function field element
  beta  
algebraic function field order
  o  
polynomial
  g  
algebraic function field element
  alpha  
polynomial
  p  
integer
  k  
polynomial
  den  

 


AlffEltNorm

Computes the norm of an element of an algebraic function field.

Syntax:

a := AlffEltNorm(b);

quotient field element or polynomial
  a  
algebraic function field element
  b  

See also:  AlffTrace, AlffEltCharPoly, Norm, Trace

 


AlffEltNum

Returns the numerator of an algebraic function field element.

Syntax:

b := AlffEltNum(a);

algebraic function field element
  a  
algebraic function field element
  b  

See also:  AlffEltDen, AlffEltToList, Num, Den

 


AlffEltOrder

Returns the order with respect to which the element has been defined.

Syntax:

o := AlffEltOrder(a);

algebraic function field order
  o  
algebraic function field element
  a  

See also:  AlffElt, AlffEltMove, AlffOrderAlff

 


AlffEltPthRoot

Computes the p^r th root of an element of a global function field.

Syntax:

b := AlffEltPthRoot(a, r);

alff element
  b  
global function field
  F  
positive integer
  r  

See also:  AlffDivisor, AlffDivisorLDim

 


AlffEltRepMat

Returns a representation matrix of an algebraic function field element.

Syntax:

M := AlffEltRepMat(a);

matrix
  M  
alff element
  a  

See also:  AlffEltCharPoly

 


AlffEltResiduum

Computes the residuum of an algebraic function.

Syntax:

r := AlffEltResiduum(P, t, a);

field element
  r  
the residuum of a at P for t
alff place
  P  
alff element
  t  
a local paramter at P
alff element
  a  
an algebraic function

See also:  AlffPlacePrimeElt, AlffResidueField, AlffEltEval, AlffEltLift, AlffEltValuation, AlffDiffResiduum

 


AlffEltRoot

Computes an n-th root of a function field element a.

Syntax:

b := AlffEltRoot(a,n );

alff element
  b  
alff element
  a  
integer
  n  

See also:  AlffEltPthRoot

 


AlffEltToList

Returns the coefficients and the denominator of an algebraic function field element.

Syntax:

L := AlffEltToList(a);

list
  L  
algebraic function field element
  a  

See also:  AlffEltNum, AlffEltDen, AlffElt, Num, Den

 


AlffEltToResField

Returns a representative of the class of an algebraic function in the residue class field of a place.

Syntax:

b := AlffEltToResField(a, P);

field element
  b  
value of a at P
alff element
  a  
alff place
  P  

See also:  AlffResFieldEltLift, AlffELtToResField, AlffEltValuation

 


AlffEltTrace

Computes the trace of an element of an algebraic function field.

Syntax:

a := AlffEltTrace(b);

quotient field element or polynomial
  a  
algebraic function field element
  b  

See also:  AlffEltNorm

 


AlffEltValuation

The valuation of an algebraic function field element at a place.

Syntax:

v := AlffEltValuation(P, a);

integer
  v  
alff place
  P  
alff order element
  a  

See also:  AlffPlaceSplit, AlffDivisor

 


AlffGapNumbers

Returns the gap numbers of a divisor.

Syntax:

L := AlffGapNumbers( D [, P] );
L := AlffGapNumbers( F [, P] );

list
  L  
containing the gap numbers
alff divisor
  D  
alff
  F  
equivalent to taking D = 0

See also:  AlffWeierstrassPlaces, AlffWronskian, AlffWronskianOrders, AlffDiff, AlffDifferentiation

 


AlffGenus

missing shortdoc

Syntax:

g := AlffGenus(F);

algebraic function field
  F  
integer
  g  
the genus

See also:  AlffDimExactConstField, Alff, AlffDivisorLBasis

 


AlffHasseWittInvariant

Computes the Hasse-Witt invariant of a global function field.

Syntax:

s := AlffHasseWittInvariant(F);

integer
  s  
global function field
  F  

See also:  AlffClassGroupPRank

 


AlffHermitianFunField

Creates a Hermitian global function field F/FF_{q^2}(T).

Syntax:

F := AlffHermitianFunField(p, d);

global function field
  F  
integer
  p, d  

See also:  AlffInit

 


AlffHermitianFunField

Creates a Hermitian global function field F/FF_{q^2}(T).

Syntax:

F := AlffHermitianFunField(p, d);

global function field
  F  
integer
  p, d  

See also:  AlffInit

 


AlffIdeal2EltAssure

Compute a two element representation of an ideal.

Syntax:

AlffIdeal2EltAssure(I);

alff order ideal
  I  

See also:  AlffIdealBasisUpperHNF

 


AlffIdealAlff

Returns the algebraic function field of an alff order ideal.

Syntax:

F := AlffIdealAlff(I);

alff
  F  
alff order ideal
  I  

See also:  AlffIdealOrder

 


AlffIdealBasis

Returns a list containing the basis elements of an alff order ideal.

Syntax:

B := AlffIdealBasis(I);

list
  B  
of basis elements
alff order ideal
  I  

See also:  AlffOrderBasis, AlffIdealBasisUpperHNF

 


AlffIdealBasisUpperHNF

Return an ideal basis in upper Hermite normal form.

Syntax:

L := AlffIdealBasisUpperHNF(I);

list
  L  
alff order ideal
  I  

See also:  AlffIdealBasis, AlffIdeal2EltAssure

 


AlffIdealClassGroupUnitsInfty

Compute the unit group and the ideal class group of the finite maximal order {rm Cl}( k[T], F ).

Syntax:

L := AlffIdealClassGroupUnitsInfty(F);

list
  L  
units and ideal class group info
alff
  F  
global function field

See also:  AlffClassGroup, AlffSUnits, AlffInit, AlffOrders

 


AlffIdealFactor

Return the factorization of an ideal.

Syntax:

L := AlffIdealFactor(I);

list
  L  
alff order ideal
  I  
in maximal order

See also:  AlffIdealValuation, AlffIdealIsPrime

 


AlffIdealGenerators

Returns a list of generators of an ideal.

Syntax:

L := AlffIdealGenerators(I);

ideal
  I  
list
  L  
of two algebraic numbers

See also:  AlffIdealBasis

 


AlffIdealIsPrime

missing shortdoc

Syntax:

b := AlffIdealIsPrime(I);

boolean
  b  
alff order ideal
  i  
in maximal order

See also:  AlffIdealFactor, AlffIdealIsPrimeKnown

 


AlffIdealIsPrimeKnown

missing shortdoc

Syntax:

b := AlffIdealIsPrimeKnown(I);

boolean
  b  
alff order ideal
  I  
in maximal order

See also:  AlffIdealIsPrime, AlffIdealFactor

 


AlffIdealNorm

missing shortdoc

Syntax:

a := AlffIdealNorm(I);

rational function or polynomial
  a  
alff order ideal
  I  

See also:  AlffIdealBasisUpperHNF

 


AlffIdealOrder

missing shortdoc

Syntax:

o := AlffIdealOrder(a);

alff order
  o  
alff order ideal
  a  

See also:  AlffOrderAlff

 


AlffIdealPlace

Given a prime ideal this function returns the corresponding place.

Syntax:

P := AlffIdealPlace(I);

prime ideal
  I  
alff place
  P  

See also:  AlffPlaceIdeal, AlffPlaces

 


AlffIdealValuation

Return the valuation of an ideal at a prime ideal.

Syntax:

v := AlffIdealValuation(P, I);

integer
  v  
alff order ideals
  P, I  
in maximal order o

See also:  AlffIdealFactor, AlffIdealIsPrime

 


AlffIharaBound

missing shortdoc

Syntax:

b := AlffIharaBound(F);
b := AlffIharaBound(q, g);

global function field
  F  
integer
  q, g  
integer
  b  

See also:  AlffSerreBound, AlffPlacesDegOneNumBound

 


AlffInit

Initializes some useful variables for an algebraic function field session.

Syntax:

AlffInit(k);
AlffInit(k, T);
AlffInit(k, T, y);

field
  k  
strings
  T, y  
the variable names

See also:  AlffOrders, Alff

 


AlffInit

Initializes some useful variables for an algebraic function field session.

Syntax:

AlffInit(k);
AlffInit(k, T);
AlffInit(k, T, y);

field
  k  
strings
  T, y  
the variable names

See also:  AlffOrders, Alff

 


AlffIsAbs

Returns whether a function field is an absolute extension.

Syntax:

b := AlffIsAbs(F);

boolean
  b  
function field
  F  

 


AlffIsGlobal

Returns whether an algebraic function field F is global.

Syntax:

b := AlffIsGlobal(F);

boolean
  b  
whether global or not
algebraic function field
  F  

See also:  AlffIsGlobalAssert, AlffConstField, Characteristic

 


AlffIsGlobalAssert

Signals an error if an algebraic function field F is not global.

Syntax:

AlffIsGlobalAssert(F);

algebraic function field
  F  

See also:  AlffIsGlobal, AlffConstField, Characteristic

 


AlffLPoly

Computes the L-polynomial of a global function field.

Syntax:

L := AlffLPoly(F);

polynomial
  L  
global function field
  F  

See also:  AlffPlacesDegOneNum, AlffPlacesDegOne

 


AlffLPolyLift

Lifts the L-polynomial of a global function field to constant field extensions.

Syntax:

Lr := AlffLPolyLift(L, r);

polynomial
  Lr, L  
integer
  r  

See also:  AlffLPoly, AlffPlacesDegOne

 


AlffLPolyRed

Computes the L-polynomial of a global function field.

Syntax:

L := AlffLPolyRed(F);
L := AlffLPolyRed(F, "nocheck");

polynomial
  L  
F global function field
  F  

See also:  AlffLPolyRed

 


AlffLinearSeriesEnumElt

Return the current divisor in the series enumeration.

Syntax:

E := AlffLinearSeriesEnumElt(env);

alff divisor
  E  
current divisor
record
  env  
of enumeration data

See also:  AlffLinearSeriesEnumNext, AlffLinearSeriesEnumEnv

 


AlffLinearSeriesEnumEnv

Prepare for enumeration of a linear series over a finite field.

Syntax:

env := AlffLinearSeriesEnumEnv(D, B);

record
  env  
of enumeration data
alff divisor
  D  
list
  B  
of v_1, \dots, v_l

See also:  AlffLinearSeriesEnumNext, AlffLinearSeriesEnumElt

 


AlffLinearSeriesEnumNext

Whether there is a next divisor in the linear series enumeration.

Syntax:

b := AlffLinearSeriesEnumNext(env);

bool
  b  
whether there is a next divisor
record
  env  
of enumeration data

See also:  AlffLinearSeriesEnumEnv, AlffLinearSeriesEnumElt

 


AlffOrderAlff

Returns the algebraic function field of an algebraic function field order.

Syntax:

F := AlffOrderAlff(o);

algebraic function field
  F  
algebraic function field order
  o  

See also:  AlffOrderPoly, Alff

 


AlffOrderBasis

Returns a basis as elements of the given alff order with a denominator.

Syntax:

L := AlffOrderBasis(o);

list of algebraic elements
  L  
alff order
  o  

See also:  AlffOrder

 


AlffOrderBasis

Returns a list containing the basis elements of an alff order.

Syntax:

B := AlffOrderBasis(o);

list
  B  
of basis elements
alff order
  o  

See also:  AlffIdealBasis

 


AlffOrderBasisValues

Returns some values depending on the B^*-values of the basis of an order of a global function field.

Syntax:

L := AlffOrderBasisValues(o);

list
  L  
global function field order
  o  

See also:  Alff, AlffOrderL0, AlffOrderReduce

 


AlffOrderDedekindTest

Performs the Dedekind-Test on an equation order in an algebraic function field.

Syntax:

b := AlffOrderDedekindTest(o);
b := AlffOrderDedekindTest(o, g);

boolean
  b  
algebraic function field order
  o  
polynomial
  g  

 


AlffOrderDeg

Returns the degree of an alff order over its coefficient ring.

Syntax:

d := AlffOrderDeg(o);

integer
  d  
degree
alff order
  o  

See also:  AlffDeg

 


AlffOrderDisc

Returns the discriminant of an algebraic function field order up to a unit.

Syntax:

d := AlffOrderDisc(o);

polynomial or quotient field element
  d  
algebraic function field order
  o  

See also:  Alff, AlffOrderMaxFinite, AlffOrderMaxInfty

 


AlffOrderEqFinite

Computes an equation order of the given algebraic function field.

Syntax:

o := AlffOrderEqFinite(F);

algebraic function field order
  o  
algebraic function field
  F  

See also:  AlffOrderEqInfty, Alff, AlffElt

 


AlffOrderEqInfty

Computes an equation order of the given algebraic function field.

Syntax:

o := AlffOrderEqInfty(F);

algebraic function field order
  o  
algebraic function field
  F  

See also:  AlffOrderEqFinite, Alff, AlffElt

 


AlffOrderIndex

Returns the index of an order.

Syntax:

d := AlffOrderIndex(o);

element
  d  
of the coefficient ring
algebraic function field order
  o  

See also:  AlffOrderMaxFinite, AlffOrderMaxInfty

 


AlffOrderIsFinite

Returns whether a function field order is finite.

Syntax:

b := AlffOrderIsFinite(o);

boolean
  b  
alff order
  P  

 


AlffOrderL0

Returns a list of 0-reduced basis elements of an order of a global function field with their B^*-values.

Syntax:

L := AlffOrderL0(o);

list
  L  
global function field order
  o  

See also:  AlffOrderBasisValues, AlffOrderReduce

 


AlffOrderMaxFinite

Computes a maximal order of an algebraic function field.

Syntax:

o := AlffOrderMaxFinite(F);

algebraic function field order
  o  
algebraic function field
  F  

See also:  AlffOrderMaxInfty, AlffOrderMaximal, Alff, AlffElt

 


AlffOrderMaxInfty

Computes a maximal order of an algebraic function field.

Syntax:

o := AlffOrderMaxInfty(F);

algebraic function field order
  o  
algebraic function field
  F  

See also:  AlffOrderMaxFinite, AlffOrderMaximal, Alff, AlffElt

 


AlffOrderMaximal

missing shortdoc

Syntax:

O := AlffOrderMaximal(o);

algebraic function field order
  O  
algebraic function field order
  o  

See also:  AlffOrderMaxFinite, AlffOrderMaxInfty

 


AlffOrderPoly

Returns the defining polynomial of the associated equation order of an algebraic function field.

Syntax:

f := AlffOrderPoly(o);

polynomial
  f  
algebraic function field order
  o  

See also:  AlffOrderDeg, Alff

 


AlffOrderReduce

Given an order of a global function field, the function returns an order with a 0-reduced basis.

Syntax:

o2 := AlffOrderReduce(o1);

global function field order
  o2  
global function field order
  o1  

See also:  AlffOrderL0, AlffOrderBasisValues

 


AlffOrderTransformationMatrix

Returns a list containing information about the transformation from the alffsuborder of the given alfforder to the given alfforder.

Syntax:

L := AlffOrderTransformationMatrix(O);

list
  L  
alfforder
  O  

 


AlffOrders

Initializes variables for some structures of an algebraic function field.

Syntax:

AlffOrders(f);

polynomial in k[T][y]
  f  

See also:  AlffInit, Alff

 


AlffOrders

Initializes variables for some structures of an algebraic function field.

Syntax:

AlffOrders(f);

polynomial in k[T][y]
  f  

See also:  AlffInit, Alff

 


AlffPlaceAlff

Given a place this function returns the algebraic function field it is belonging to.

Syntax:

F := AlffPlaceAlff(P);

algebraic function field
  F  
alff place
  P  

See also:  AlffOrderAlff

 


AlffPlaceBeta

Return an inverse prime element for a place.

Syntax:

b := AlffPlaceBeta(P);

alff element
  b  
alff place
  P  

See also:  AlffEltValuation, AlffPlacePrimeElt, AlffPlaceMin

 


AlffPlaceDeg

Computes the degree of a place.

Syntax:

d := AlffPlaceDeg(P);

integer
  d  
alff place
  P  

See also:  AlffPlaceSplit, AlffPlaceRam, AlffPlaceResDeg

 


AlffPlaceIdeal

missing shortdoc

Syntax:

I := AlffPlaceIdeal(P);

alff order ideal
  I  
alff place
  P  

See also:  AlffPlaceOrder, AlffPlaceSplit, AlffIdealFactor

 


AlffPlaceIsFinite

Returns whether a place is finite.

Syntax:

b := AlffPlaceIsFinite(P);

boolean
  b  
alff place
  P  

See also:  AlffPlaceSplit

 


AlffPlaceMin

Returns the "minimum" of a place.

Syntax:

p := AlffPlaceMin(P);

prime polynomial or 1/T
  p  
alff place
  P  

See also:  AlffPlaceSplit

 


AlffPlaceOrder

missing shortdoc

Syntax:

o := AlffPlaceOrder(P);

alff order
  o  
alff place
  P  

See also:  AlffPlaceIdeal, AlffPlaceIsFinite, Alff

 


AlffPlacePrimeElt

missing shortdoc

Syntax:

u := AlffPlacePrimeElt(P);

alff element
  u  
alff place
  P  

See also:  AlffEltValuation, AlffPlaceBeta

 


AlffPlaceRam

Ramification of a place.

Syntax:

r := AlffPlaceRam(P);

integer
  r  
alff place
  P  

See also:  AlffPlaceSplit, AlffPlaceDeg, AlffPlaceResDeg

 


AlffPlaceRandom

Returns a random place of degree d.

Syntax:

p := AlffPlaceRandom(F,d);

alff place
  p  
of degree d
global function field
  F  
integer
  d  

See also:  AlffPlaces, AlffPlacesDegOne

 


AlffPlaceResDeg

Residue class field extension degree of a place.

Syntax:

f := AlffPlaceResDeg(P);

integer
  f  
alff place
  P  

See also:  AlffPlaceSplit, AlffPlaceRam, AlffPlaceDeg

 


AlffPlaceResField

Return the residue field of a place.

Syntax:

K := AlffPlaceResField(P);

field
  K  
residue field of P
alff place
  P  

See also:  AlffResFieldEltLift, AlffELtToResField, AlffEltValuation

 


AlffPlaceSplit

Decompose a rational function field place.

Syntax:

L := AlffPlaceSplit(F, p);

list
  L  
of places {frak P} above {frak p}
algebraic function field
  F  
prime polynomial or 1/T
  p  

See also:  AlffPlaceRam, AlffPlaceDeg, AlffPlaceResDeg, AlffEltValuation

 


AlffPlaceSplitType

Returns a list with ramification indices and relative degrees of all pairwise distinct places lying over a rational function field place.

Syntax:

L := AlffPlaceSplitType(F, p);

list
  L  
algebraic function field
  F  
polynomial or 1/T
  p  

See also:  AlffPlaceSplit, AlffPlaceRam, AlffPlaceResDeg, AlffSignature, AlffIdealFactor

 


AlffPlaceSplitType

Returns a list with ramification indices and relative degrees of all pairwise distinct places lying over a rational function field place.

Syntax:

L := AlffPlaceSplitType(F, p);

list
  L  
algebraic function field
  F  
polynomial or 1/T
  p  

See also:  AlffPlaceSplit, AlffPlaceRam, AlffPlaceResDeg, AlffSignature, AlffIdealFactor

 


AlffPlaces

Computes places of a global function field.

Syntax:

L := AlffPlaces(F,d);

list
  L  
of alff places
global function field
  F  
integer
  d  

See also:  AlffPlacesNum, AlffPlacesDegOne, AlffPlacesDegOneNum

 


AlffPlacesDegOne

Compute all places of degree one of a global function field.

Syntax:

L := AlffPlacesDegOne(F);

global function field
  F  
list
  L  
of alff places

See also:  AlffPlacesDegMNum

 


AlffPlacesDegOne

Computes all places of degree one of a global function field.

Syntax:

L := AlffPlacesDegOne(F);

global function field
  F  
list
  L  
of alff places of degree 1

See also:  AlffPlacesDegOneNum, AlffPlaces, AlffPlacesNum, AlffPlaceRandom

 


AlffPlacesDegOneNonSingFiniteNum

Computes the number of finite non singular places of degree one of a global function field's constant field extension of degree m.

Syntax:

b := AlffPlacesDegOneNonSingFiniteNum(F, m);

global function field
  F  
integers
  b,m  

See also:  AlffPlacesDegOneNumBound

 


AlffPlacesDegOneNum

Computes the number of places of degree one of a global function field's constant field extension.

Syntax:

N := AlffPlacesDegOneNum(F,m);

global function field
  F  
integer
  N, m  

See also:  AlffPlacesDegOneNumBound, AlffPlacesDegOne

 


AlffPlacesDegOneNum

Computes the number of places of degree one of a global function field's constant field extension.

Syntax:

N := AlffPlacesDegOneNum(F,m);

global function field
  F  
integer
  N, m  

See also:  AlffPlacesDegOneNumBound, AlffPlacesDegOne, AlffPlaces, AlffPlacesNum

 


AlffPlacesDegOneNumBound

Computes a bound for the number of places of degree one of a global function field.

Syntax:

b := AlffPlacesDegOneNumBound(F);
b := AlffPlacesDegOneNumBound(q, g);

global function field
  F  
integer
  q, g  
integer
  b  

See also:  AlffSerreBound, AlffIharaBound

 


AlffPlacesNonSpecial

Computes a non special system of g distinct places for a global function field F/k of genus g.

Syntax:

S := AlffPlacesNonSpecial(F);
S := AlffPlacesNonSpecial(F, d);

list
  S  
of alff places
global function field
  F  
integer
  d  
>= 1

See also:  AlffPlaces, AlffDivisorLDim

 


AlffPlacesNum

Computes the number of places of a given degree of a global function field.

Syntax:

N := AlffPlacesNum(F, m);

global function field
  F  
integers
  N, m  

See also:  AlffPlacesDegMNum, AlffPlacesDegOne

 


AlffPlacesNum

Computes the number of places of a given degree of a global function field.

Syntax:

N := AlffPlacesNum(F, m);

global function field
  F  
integers
  N, m  

See also:  AlffPlacesDegOneNum, AlffPlaces, AlffPlacesDegOne

 


AlffPoly

missing shortdoc

Syntax:

f := AlffPoly(F);

polynomial
  f  
algebraic function field
  F  

See also:  Alff

 


AlffPolyIrrIsSep

missing shortdoc

Syntax:

b := AlffPolyIrrIsSep(f);

polynomial in T and y over field
  f  
boolean
  b  

See also:  AlffPolyIsIrreducible, AlffPolyIsIrrSep, Alff

 


AlffPolyIsIrrSep

missing shortdoc

Syntax:

b := AlffPolyIsIrrSep(f);

polynomial in T and y over field
  f  
boolean
  b  

See also:  AlffPolyIsIrreducible, Alff

 


AlffPolyIsIrreducible

missing shortdoc

Syntax:

b := AlffPolyIsIrreducible(f);

polynomial in T and y over field
  f  
boolean
  b  

See also:  AlffPolyIsIrrSep, Alff

 


AlffPuiseuxCoeff

Returns the finite constant field of the Puiseux series field into which all completions of a global function field with respect to the infinite valuations can be embedded.

Syntax:

k := AlffPuiseuxCoeff(F);

finite field
  k  
global function field
  F  

See also:  AlffRoots

 


AlffRamDivisor

Returns the ramification divisor of a divisor.

Syntax:

A := AlffRamDivisor(D);
A := AlffRamDivisor(F);

alff divisor
  A  
the ramification divisor of D
alff divisor
  D  
alff
  F  
equivalent to taking D = 0

See also:  AlffWronskian, AlffWronskianOrders, AlffWeierstrassPlaces, AlffGapNumbers, AlffDiff, AlffDifferentiation

 


AlffRegulator

Computes the regulator of a global function field's finite maximal order's unit group.

Syntax:

R := AlffRegulator(o);

integer
  R  
finite maximal order
  o  

See also:  AlffSignature, AlffUnitRank, AlffUnitsFund

 


AlffResFieldEltLift

Lifts a residue field element.

Syntax:

a := AlffResFieldEltLift(b, P);

alff element
  a  
in o_P
field element
  b  
value of a at P to be lifted
alff place
  P  

See also:  AlffResFieldEltLift, AlffELtToResField, AlffEltValuation

 


AlffRootParams

Sets/Displays the iteration depth of root expansions and the precision for series operations.

Syntax:

L := AlffRootParams(F);
L := AlffRootParams(F, n, m);

list
  L  
global function field
  F  
integer
  n  
integer
  m  

See also:  AlffRoots

 


AlffRoots

Computes the Puiseux expansions in T^{-1/e} of the roots of the defining polynomial of a global function field F/FF_q(T).

Syntax:

L := AlffRoots(F);

list
  L  
global function field
  F  

See also:  AlffRootParams, InftyVal

 


AlffSUnits

Find the S-regulator and a basis for the free part of the S-units.

Syntax:

L := AlffSUnits( S [, "raw" ] );

list
  L  
the S-regulator and a basis of S-units
list
  S  
a list of places

See also:  AlffClassGroupGens, AlffClassGroup, AlffInit, AlffOrdersAlffDivisorReduction, AlffDivisorLargeLDim, AlffPlacesDegOne

 


AlffSerreBound

Computes the Serre bound of a global function field.

Syntax:

b := AlffSerreBound(F);
b := AlffSerreBound(q, g);

global function field
  F  
integer
  q, g  
integer
  b  

See also:  AlffIharaBound, AlffPlacesDegOneNumBound

 


AlffSignature

Returns the signature of a global function field extension F/FF_q(T).

Syntax:

L := AlffSignature(F);

list
  L  
global function field
  F  

See also:  AlffPlaceSplit, AlffUnitRank

 


AlffTameInftyPlace

Returns whether the infinite place of k(T) is tamely ramified in the algebraic field extension F/k(T), or not.

Syntax:

b := AlffTameInftyPlace(F);

boolean
  b  
algebraic function field
  F  

See also:  AlffPlaceSplit

 


AlffUnitRank

Returns the unit rank of a global function field extension F/FF_q(T).

Syntax:

r := AlffUnitRank(F);

integer
  r  
global function field
  F  

See also:  AlffSignature

 


AlffUnitsFund

Computes s-1 fundamental units of a global function fields's finite maximal order.

Syntax:

L := AlffUnitsFund(o);

list
  L  
finite maximal order
  o  
of a global function field

See also:  AlffRegulator

 


AlffVarT

missing shortdoc

Syntax:

T := AlffVarT(F);

algebraic function field
  F  
polynomial
  T  

See also:  AlffEltGenT, Alff

 


AlffVarY

missing shortdoc

Syntax:

y := AlffVarY(F);

algebraic function field
  F  
polynomial
  y  

See also:  AlffEltGenY, Alff

 


AlffWeierstrassPlaces

Returns the Weierstra\ss{} places of a divisor.

Syntax:

L := AlffWeierstrassPlaces( D );
L := AlffWeierstrassPlaces( F );

list
  L  
containing the Weierstra\ss{} places
alff divisor
  D  
alff
  F  
equivalent to taking D = 0

See also:  AlffGapNumbers, AlffRamDivisor, AlffWronskian, AlffWronskianOrders, AlffDiff, AlffDifferentiation

 


AlffWronskian

Returns the Wronski matrix of a Riemann-Roch space.

Syntax:

W := AlffWronskian(D);
W := AlffWronskian(F);

list
  W  
list of rows
alff divisor
  D  
{cal L}(D) is computed
alff
  F  
equivalent to taking D = 0

See also:  AlffWronskianOrders, AlffDiff, AlffDifferentiation, AlffRamDivisor

 


AlffWronskianOrders

Returns the Wronski orders of a Riemann-Roch space.

Syntax:

W := AlffWronskianOrders(D);
W := AlffWronskianOrders(F);

list
  W  
list of rows
alff divisor
  D  
{cal L}(D) is computed
alff
  F  
equivalent to taking D = 0

See also:  AlffWronskian, AlffDiff, AlffDifferentiation, AlffRamDivisor

 


ArcCos

Returns the inverse cosine of a number.

Syntax:

y := ArcCos(x);

complex
  y  
complex
  x  

See also:  Cos, Tan

 


ArcSin

Returns the inverse sine of a number.

Syntax:

y := ArcSin(x);

complex
  y  
complex
  x  

See also:  Sin, Cos, Tan

 


ArcTan

Returns the inverse tangens of a number.

Syntax:

y := ArcTan(x);

complex
  y  
complex
  x  

See also:  Sin, Cos, Tan

 


Arg

Returns the argument of a complex number.

Syntax:

phi := Arg(z);

real
  phi  
complex
  z  

 


BagRead

Reads a bag from an open file.

Syntax:

BagRead(file); BagRead("filename");

File
  file  

See also:  BagWrite

 


BagWrite

Writes a bag to an open file.

Syntax:

BagWrite (file, arg [,arg]); BagWrite("filename", arg [,arg]);

File
  file  
any expression
  arg  

See also:  BagRead

 


Bell

Sounds the terminal bell.

Syntax:

Bell();

 


Bernoulli

Returns a list of Bernoulli numbers.

Syntax:

bern := Bernoulli(n);

integer
  n  
list
  bern  

See also:  BernoulliMagma

 


BernoulliMagma

Returns a list of Bernoulli numbers.

Syntax:

bern := BernoulliMagma(n);

integer
  n  
list
  bern  

See also:  Bernoulli

 


C

Predefined constant: Complex field C.

Syntax:

C;

ring
  C  

See also:  Z, Q, R, Prec

 


Ceil

Returns the minimal integer greater than or equal to a number.

Syntax:

y := Ceil(x);

integer
  y  
real
  x  

See also:  Trunc, Round, Floor

 


CharPoly

Computes the characteristic polynomial of an algebraic element, a matrix or an alff element

Syntax:

p := CharPoly (a [,PA]);
p := CharPoly (a [,O]);
p := CharPoly( M );

polynomial
  p  
polynomial algebra
  PA  
suborder
  O  
algebraic element alff order element
  a  
matrix
  M  

See also:  EltCharPolyAlffEltCharPolyMatCharPoly

 


CharToInt

Returns the ASCII code of a character.

Syntax:

i := CharToInt(c);

character
  c  
integer
  i  

See also:  IntToChar

 


Characteristic

Return the characteristic of a ring.

Syntax:

m := Characteristic(R);

integer
  m  
ring
  R  

 


CheckArgus

Handy tool to check the input to a kash function.

Syntax:

r = CheckArgus (hdCall,string);

r
  int  
number of type matching format string
hdCall
  TypHandle  
all arguments
string of format strings
  t_string  

 


ChineseRemainder

Chinese remainder for integers, ideals, and polynomials.

Syntax:

elt := ChineseRemainder(M,L);
elt := ChineseRemiander(LM);
elt := ChineseRemainder(m1, m2, a1, a2);

integer, polynommial, or order element
  elt  
list of elements (integers, polynomials, or order elements)
  L  
list of modules (integers, polynomials, or ideals)
  M  
list of pairs of elements and modules
  LM  
modules (integers, polynomials, or ideals)
  m1,m2  
elements (integers, polynomials, or order elements)
  a1,a2  

See also:  IdealChineseRemainder

 


Close

Closes a file.

Syntax:

closed := Close(f);

File
  f  
boolean
  closed  

See also:  BagRead, BagWrite, ECHOon, ECHOoff, FLDin, FLDout, LOFILES, Open

 


Coeff

Syntax:

a := Coeff(poly, i [,"x"]);

ring element
  a  
polynomial
  poly  
positive integer
  i  

See also:  Coef

 


ColorString

Defines a string for use in Print to get colorful output.

Syntax:

s := ColorString(l);

string
  s  
list of strings
  l  

 


Colors

Activate or deactivate color mode and customize colors.

Syntax:

Colors(flag);
Colors(s1, ..., sn);
Colors(L);

boolean
  flag  
switch color mode on or off
string
  s1, ..., sn  
resource strings
list
  L  
list of lists of resource strings

 


Comp

Creates a complex number.

Syntax:

z := Comp(a, b);

complex
  z  
real
  a  
real
  b  

 


ComplexGamma

Returns .

Syntax:

c := ComplexGamma(z);

complex
  z  
complex
  c  

 


Conj

Returns the conjugate complex number.

Syntax:

w := Conj(z);

complex
  w  
complex
  z  

 


Cos

Returns the cosine of a number.

Syntax:

y := Cos(x);

complex
  y  
complex
  x  

See also:  Sin, Tan

 


Date

Returns the current date and time in a record

Syntax:

t := Date( );

record
  t  

 


DbQuery

Performs a query in the database "kate"

Syntax:

DbQuery(query [, num])

string
  query  
integer
  num  

 


DedekindEta

Calculates the value of Dedekind's \eta-function.

Syntax:

u := DedekindEta(z);

complex
  u  
complex
  z  
complex number with Im(z)>0

 


Den

Returns the denominator of an object.

Syntax:

d := Den( a );
d := Den(a, "rep");
d := Den( q );
I := Den( I );

integer
  d  
quotient field element or polynomial
  d  
rational
  q  
algebraic element
  a  
algebraic function field order element
  a  
quotient field element or polynomial
  q  
ideal
  I  

 


Disc

Computes the discriminant of a polynomial, an order, an algebraic element, an alff order or a lattice.

Syntax:

d := Disc(f);
d := Disc(o);
d := Disc(l);

ring element
  d  
polynomial
  f  
order alff order
  o  
lattice
  l  

 


ECHOoff

Switches back to normal behaviour after ECHOon.

Syntax:

ECHOoff();

See also:  ECHOon

 


ECHOon

Switches the output of stdout to a file.

Syntax:

ECHOon ( name \| file [, arg] );

string
  name  
filename to write to
file
  file  
open for writing
expression
  arg  
should produce an output to stdout

See also:  ECHOoff

 


EccDecrypt

Decrypt a message that was encrypted using the ElGamal public key cryptosystem and a subgroup of the group of an elliptic curve.

Syntax:

P := EccDecrypt(K,E,a,M);

finite field
  K  
list
  E  
integer
  a  
list
  M  
list
  P  

See also:  EccPointsAdd, EccIntPointMult, EccPointIsOnCurve, EccEncrypt, FF

 


EccEncrypt

Encrypt a message (point) using the ElGamal public key cryptosystem and a subgroup of the group of an elliptic curve.

Syntax:

M := EccEncrypt(K,E,B,aB,k,P);

finite field
  K  
list
  E  
list
  B  
list
  aB  
integer
  k  
list
  P  
list
  M  

See also:  EccPointsAdd, EccIntPointMult, EccPointIsOnCurve, EccDecrypt, FF

 


EccInit

Initializes a representation of an elliptic curve for the Ecc-package.

Syntax:

ec := EccInit(p,a,b);
ec := EccInit(p,li);
ec := EccInit(fli);

elliptic curve
  ec  
integer
  a  
integer
  b  
integer
  p  
list of integers
  li  
list of finite field elements
  fli  

 


EccIntPointMult

Scalar multiplication of a point on an elliptic curve.

Syntax:

nP := EccIntPointMult(K,E,n,P);

finite field
  K  
list
  E  
integer
  n  
list
  P  
list
  nP  

See also:  EccPointsAdd, EccPointIsOnCurve, EccEncryptEccDecrypt, FF

 


EccKangaroo

Computes the number of places of an elliptic curve, given by the Weierstrass form over a prime finite field F_p.

Syntax:

NP:=EccNumberOfPoints(p | F,a,b);
NP:=EccNumberOfPoints(ec);

int or finite field element
  a  
int or finite field element
  b  
int
  p  
finite field
  F  
list
  ec  

 


EccPointIsOnCurve

Checks whether a point is on a given elliptic curve.

Syntax:

b := EccPointIsOnCurve(K,ec,point);

finite field
  K  
list
  ec  
list
  point  
boolean
  b  

See also:  EccPointsAdd, EccIntPointMult, EccEncryptEccDecrypt, FF

 


EccPointsAdd

Returns the sum of two points on an elliptic curve over a finite field.

Syntax:

sum := EccPointsAdd(K,ec,P1,P2);

finite field
  K  
list
  E  
list
  P1  
list
  P2  
list
  sum  

See also:  EccIntPointMult, EccPointIsOnCurve, EccEncryptEccDecrypt, FF

 


EccRandomPoint

Returns a random point on a given elliptic curve.

Syntax:

P := EccRandomPoint(F,E);

point on the elliptic curve E
  P  
finite field
  F  
elliptic curve
  E  

 


Ei

This function computes an approximation of the integral from -\infty to x of exp(t)/t.

Syntax:

a := Ei(b);

real
  a  
real
  b  

 


EisensteinSeries

Returns the value of the non-holomorphic Eisensteinseries.

Syntax:

c := EisensteinSeries(tau,s,a1,a2,q,N);

complex
  tau  
real
  s  
integer
  a1  
integer
  a2  
integer
  q  
positive integer
  N  

 


Elt

Creates an algebraic number.

Syntax:

a := Elt(O,L);
a := Elt(O,L/d);
a := Elt(O,h/d);
a := Elt(O,h);

algebraic element
  a  
order
  O  
list
  L  
of coefficients
integer
  h  
integer
  d  

 


EltAbs

missing shortdoc

Syntax:

v := EltAbs (a);

real matrix
  v  
algebraic element
  a  

See also:  OrderSig, EltCon

 


EltAbsLogHeight

Computes the absolute logarithmic height of an algebraic number.

Syntax:

h := EltAbsLogHeight(a);

real
  h  
algebraic element
  a  

 


EltApproximation

Returns an element with certain valuations at prime ideals.

Syntax:

E := EltApproximation(P, L);

list
  P  
of distinct prime ideals over the same order
list
  L  
of small integers
algebraic element
  E  

See also:  IdealChineseRemainder, RayCantoneseRemainder

 


EltAutomorphism

Applies an automorphism to an algebraic number.

Syntax:

L := EltAutomorphism (a);
c := EltAutomorphism (a,i);

list
  L  
algebraic element
  c  
algebraic element
  a  
integer
  i  

See also:  OrderAutomorphisms

 


EltCharPoly

Characteristic polynomial of an algebraic element over a subfield.

Syntax:

p := EltCharPoly (a [, PA]);
p := EltCharPoly (a [, O]);

polynomial
  p  
polynomial algebra
  PA  
suborder
  O  
algebraic element
  a  

 


EltCon

Computes the conjugates of an algebraic number.

Syntax:

v := EltCon(alpha);
c := EltCon(alpha,i);

complex matrix
  v  
complex number
  c  
algebraic element
  alpha  
integer
  i  

See also:  EltAbs, OrderSig

 


EltDen

Returns the denominator of an algebraic element.

Syntax:

d := EltDen(a);
d := EltDen(a, "rep");

integer
  d  
algebraic element
  a  

 


EltDivisors

Computes all divisors of an algebraic integer.

Syntax:

L := EltDivisors (a);

list
  L  
algebraic integer
  a  

 


EltExcepUnitOrbit

Computes the orbit of an exceptional unit.

Syntax:

L := EltExcepUnitOrbit(epsilon);

list
  L  
algebraic element
  epsilon  

See also:  OrderUnitsExcep

 


EltFactor

Computes the prime ideal factorization of an algebraic integer.

Syntax:

L := EltFactor(a);

list
  L  
algebraic element
  a  

See also:  Factor

 


EltIdealReduce

Returns a canonical representative modulo an ideal.

Syntax:

b := EltIdealReduce(a,I); same as b := EltIdealReduce(a,I,HNF);
b := EltIdealReduce(a,I,LLL);
b := EltIdealReduce(a,I,INTEGRAL);
b := EltIdealReduce(a,I,HNF_POS);
b := EltIdealReduce(a,I,INTEGRAL_POS);

algebraic element
  b  
algebraic element
  a  
Ideal
  I  
interpreted as strings
  HNF, LLL, INTEGRAL, HNF_POS, INTEGRAL_POS  

 


EltIndex

Computes the index of an equation suborder of a given order

Syntax:

index := EltIndex (alpha [,Z]);

integer
  index  
algebraic integer
  alpha  
ring of integers
  Z  

See also:  OrderIndexFormEquation

 


EltIsInIdeal

missing shortdoc

Syntax:

b := EltIsInIdeal (alpha,a);

boolean
  b  
algebraic element
  alpha  
ideal
  a  
  INDES test on; element of an ideal  
  check for; element of an ideal  
  algebraic number; element of an ideal test  
  element of an ideal test  

 


EltIsInt

missing shortdoc

Syntax:

b := EltIsInt(a);

boolean
  b  
algebraic element
  a  

 


EltIsIntegral

Tests whether the element is an algebraic integer resp. an element of the order. The second parameter "order" checks, if the element is integral in the mathematical sence, e.g. if it has a denominator.

Syntax:

b := EltIsIntegral(a);
b := EltIsIntegral(a, "order");

boolean
  b  
algebraic element
  a  

 


EltIsPrimitive

Checks whether an algebraic element is primitive.

Syntax:

b := EltIsPrimitive (a);

boolean
  b  
algebraic element
  a  

See also:  EltMinPoly

 


EltListAbsDisc

Discriminant of a module.

Syntax:

d := EltListAbsDisc (L);

list
  L  
of algebraic elements
integer
  d  

 


EltListToMat

Converts a list of algebraic numbers into a matrix of their coefficients.

Syntax:

M := EltListToMat(L);

matrix
  M  
matrix over the coefficient order of the elements of L
list
  L  
of algebraic numbers

See also:  EltMatToList

 


EltLogs

Returns a matrix v with the logarithms of the absolute values of the conjugates the algebraic number a. Matrix v has length r|1+r|2.

Syntax:

v := EltLogs(a);

real matrix
  v  
algebraic element
  a  

See also:  OrderSig, EltCon

 


EltMatToList

Converts a matrix of algebraic numbers over a maximal order o into a dynamic array of elements of the relative order O.

Syntax:

L := EltMatToList(O, M);

list
  L  
of algebraic numbers over O
matrix
  M  
of algebraic numbers
order
  O  
relative order over the coefficient order of the elements of the matrix

See also:  EltListToMat

 


EltMinPoly

Minimal polynomial of an algebraic element over a subfield.

Syntax:

p := EltMinPoly (a [, PA]);
p := EltMinPoly (a [, O]);

polynomial
  p  
polynomial algebra
  PA  
suborder
  O  
algebraic element
  a  

 


EltMinkowski

Returns the image of an algebraic element under the Minkowski map.

Syntax:

v := EltMinkowski(a);

real matrix
  v  
algebraic element
  a  

 


EltMove

Returns an algebraic element in a different representation.

Syntax:

b := EltMove(a,S);

algebraic element or lattice element
  b  
algebraic element or lattice element
  a  
order or lattice
  S  

See also:  PolyMove, IdealMove

 


EltNewtonLift

Lifts an algebraic element with the Newton lifting method.

Syntax:

alpha := EltNewtonLift(o, a, f, p, k);

algebraic element
  alpha  
order
  o  
algebraic element
  a  
polynomial
  f  
integer
  p  
integer
  k  

 


EltNorm

Returns the norm of an algebraic element in a given order.

Syntax:

n := EltNorm(a [,o]);

rational number or algebraic element
  n  
algebraic element
  a  
order
  o  

See also:  EltTrace

 


EltNumberReduce

Returns a canonical representative modulo an integer or rational.

Syntax:

b := EltNumberReduce(a,m);

integer or rational number
  m  
algebraic element
  a  
algebraic element
  b  

 


EltOrder

Returns the order of an algebraic element.

Syntax:

o := EltOrder(alpha);

order
  o  
algebraic element or integer
  alpha  

 


EltPowerMod

Computes a^ {pow} \bmod M for an algebraic element.

Syntax:

e := EltPowerMod(a, pow, M);

algebaric element
  e, a  
integer
   {pow}  
integer
  M  

 


EltPowerProduct

Returns an algeraic element \beta with the power product of the algebraic elements in Alpha and the corresponding exponents in Expons. The matrices Alpha and Expons must have the same length and only one row.

Syntax:

beta := EltPowerProduct(o,Alpha,Expons);

algebraic element
  beta  
order
  o  
matrix of algebraic elements
  Alpha  
matrix of integers
  Expons  

 


EltRayResidueRingRep

Returns a representive of the class of an algebraic element in the multiplicative group of the ray residue ring.

Syntax:

r := EltRayResidueRingRep(elt,m0,minf);

matrix
  r  
algebraic element
  elt  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  EltCon, RayResidueRing, RayResidueRingRepToElt, RayResidueRingCyclicFactors

 


EltReconstruct

Lifts an element from a modulo m approximation to an element with rational coefficients

Syntax:

alpha := EltReconstruct (gamma, m);

false or algebraic element
  alpha  
algebraic element
  gamma  
integer
  m  

See also:  RationalReconstruct

 


EltRepMat

A representation matrix of an algebraic element over o together with a suitable denominator.

Syntax:

L := EltRepMat(a[,o]);

list
  L  
algebraic element
  a  
order
  o  
must be a direct suborder of EltOrder (a)

 


EltRoot

Computes a root of an algebraic element.

Syntax:

beta := EltRoot(alpha,m);
beta := EltRoot(alpha,m [,"enum"|"mode"]);
beta := EltRoot(alpha,m ,"enum", mode);

false or algebraic element
  beta  
algebraic element
  alpha  
small integer
  m  
small integer or string
  mode  
string
  enum  

 


EltSimplify

Returns a in simplified representation.

Syntax:

e := EltSimplify(a);

integer or algebaric element
  e  
integer or algebraic element
  a  

 


EltToFFE

Returns the class of an algebraic element viewed as an element of a finite field.

Syntax:

f := EltToFFE( a, p);

integer or algebraic element
  a  
prime ideal
  p  
finite field element or integer
  f  
interpreted as finite field element

See also:  IdealResidueField, IdealResidueFieldIsomorphism, FFEToElt

 


EltToList

Returns the coefficient list of the algebraic element a.

Syntax:

L := EltToList(a);

algebraic element
  a  
list
  L  
of integers or algebraic elements

 


EltTrace

Returns the trace of an algebraic element. The trace is contained in the coefficient ring of the defining order or in the given order o.

Syntax:

t := EltTrace (a [,o]);

rational number or algebraic element
  t  
algebraic element
  a  
order
  o  

See also:  EltNorm

 


EltUnitDecompose

Returns the decomposition of an unit with respect to the computed system of fundamental units of a maximal order.

Syntax:

F := EltUnitDecompose(u);
L := EltUnitDecompose(u,"expons");

list
  F  
list
  L  
algebraic element
  u  

 


EltValuation

Compute the valuation of an algebraic element or an integer.

Syntax:

val := EltValuation(P, alpha);

  val}{integer}{returned value.  
  P}{ideal}{a prime ideal.  
  alpha}{algebraic element or integer}{number to evaluate.  

See also:  IdealValuation, IntValuation

 


EulerGamma

Returns the value of the Euler constant \gamma.

Syntax:

y := EulerGamma();

real
  y  

 


Eval

Evaluates a polynomial at a value.

Syntax:

y := Eval(f, s);

  y  
polynomial
  f  
  s  

 


Exp

Returns the exponential of a number.

Syntax:

y := Exp(x);

complex
  y  
complex
  x  

See also:  Log

 


FF

Creates a finite field.

Syntax:

F := FF(p);
F := FF(p, d);
F := FF(f);

finite field
  F  
integer
  p  
integer
  d  
polynomial
  f  

See also:  FFElt, FFGenerator, FFPrimitiveElt

 


FFCreate

Creates a finite field.

Syntax:

FFCreate(O,p,k)

order
  O  
integer
  p  
integer
  k  

See also:  kantff

 


FFEToElt

Returns a canonical representative of a finite field element viewed as a representative of a class of algebraic numbers.

Syntax:

a := FFEToElt( f, p);

finite field element
  f  
ideal
  p  
must be prime
algebraic number or integer
  a  
interpreted as algebraic number

See also:  IdealResidueField, IdealResidueFieldIsomorphism, EltToFFE

 


FFElt

Creates an element of a finite field.

Syntax:

a := FFElt(F, n);

finite field element
  a  
finite field
  F  
integer
  n  

See also:  FFPrimitiveElt, FFGenerator, FFEltToList

 


FFEltFF

Gives the finite field corresponding to the element.

Syntax:

F := FFEltFF(a);

finite field element
  a  
finite field
  F  

See also:  FFElt, FF

 


FFEltIsZero

Returns true iff the argument is of type "KANT finite field elt" AND zero.

Syntax:

b := FFEltIsZero(a);

boolean
  b  
  a  

 


FFEltLog

Discrete logarithm for finite fields.

Syntax:

d := FFEltLog(a);

finite field element
  a  
integer
  d  

See also:  FFPrimitiveElt

 


FFEltMinPoly

Minimal polynomial of finite field elements.

Syntax:

p := FFEltMinPoly(a);
p := FFEltMinPoly(a, J);
p := FFEltMinPoly(a, Jx);

polynomial
  p  
finite field element
  a  
finite field
  J  
subfield of the finite field of a
polynomial algebra in x over J
  Jx  

See also:  FFPrimitiveElt

 


FFEltMove

Move finite field element into another finite field if possible.

Syntax:

b := FFEltMove(a, J);

finite field element
  b  
finite field element
  a  
finite field
  J  

See also:  FFPrimitiveElt

 


FFEltNorm

Norm of finite field elements.

Syntax:

p := FFEltNorm(a);
p := FFEltNorm(a, J);

polynomial
  p  
finite field element
  a  
finite field
  J  
subfield of the finite field of a

See also:  FFPrimitiveElt

 


FFEltRoot

Syntax:

b := FFEltRoot(a, n);

finite field element
  b  
finite field element
  a  
small integer
  n  

 


FFEltToInt

Converts an element of a finite prime field to the corresponding integer.

Syntax:

i := FFEltToInt(b);

finite field element
  b  
integer
  i  

 


FFEltToList

Returns a basis representation of a finite field element.

Syntax:

L := FFEltToList(b);
L := FFEltToList(b, k);

finite field element
  b  
subfield
  k  
list
  L  

See also:  FFGenerator

 


FFEltTrace

Trace of finite field elements.

Syntax:

p := FFEltTrace(a);
p := FFEltTrace(a, J);

polynomial
  p  
finite field element
  a  
finite field
  J  
subfield of the finite field of a

See also:  FFPrimitiveElt

 


FFEmbed

Embeds one finite field into another.

Syntax:

FFEmbed(F1, F2);
FFEmbed(F1, F2, b);

finite field
  F1  
finite field
  F2  
finite field element
  b  

See also:  FF

 


FFGenerator

Returns a generator of a finite field.

Syntax:

a := FFGenerator(F);
a := FFGenerator(F, k);

finite field element
  a  
finite field
  F  
subfield of F
  k  

See also:  FFPrimitiveElt, FFEltToList

 


FFPrimitiveElt

Returns a primitive element of a finite field.

Syntax:

w := FFPrimitiveElt(F);

finite field element
  w  
finite field
  F  

See also:  FFElt, FFGenerator

 


FFSize

Gives the size of the finite field FF_q.

Syntax:

L := FFSize(F);

list
  L  
of p and d with p^d = q.
finite field
  F  

 


FLDin

Reads an order in the FLD format.

Syntax:

o := FLDin(name [, n]);
o := FLDin();
o := FLDin(f [, n]);

file
  f  
open for reading
string
  name  
filename
order
  o  
integer
  b  
the number of fields to skip. If given, the number
  of fields is returned.  

See also:  FLDout, Open

 


FLDin_DB

Reads an order in the FLD format for database "kate" without fundamental units and only number of generators of the class group and their orders

Syntax:

o := FLDin(name [, n]);
o := FLDin();
o := FLDin(f [, n]);

file
  f  
open for reading
string
  name  
filename
order
  o  
integer
  b  
the number of fields to skip. If given, the number
  of fields is returned.  

See also:  FLDout, Open

 


FLDout

Writes an order using the FLD format.

Syntax:

FLDout(o [, name | file]);

Order
  o  
String
  name  
filename to use
File
  file  
opened for writing

See also:  Open, Close, LOFILES, FLDin, ECHOon, ECHOoff

 


Factor

Returns the factorization of the given argument.

Syntax:

F := Factor(d);
F := Factor(f);
F := Factor(f, p);
F := Factor(a);
F := Factor(alpha);
F := Factor(O, d);
F := Factor(O, a);
F := Factor(O, alpha);

list
  F  
prime
  p  
integer
  d  
polynomial
  f  
ideal
  a  
algebraic element
  alpha  
order
  O  

See also:  IntFactor, EltFactor, PolyFactor, IdealFactor

 


FilePosition

Sets or reads the file position, allowing thus random access of FLD files.

Syntax:

o := FilePosition(file [, pos ]);

file
  f  
open for reading

See also:  FLDout, Open

 


FindMaximalCentralField

Finds the maximal factorgroup where a list of automorphisms acts trivial.

Syntax:

sg := FindMaximalCentralField(o | I [, inf][, aut]);
sg := FindMaximalCentralField(G [, aut]);

Matrix
  sg  
describing the aditional relations
order
  o  
integral ideal
  I  
list
  inf  
of infinite places
AbelianGroup
  G  
must be from RayClassGroupToAbelianGroup
list
  aut  
of automorphisms of o, if omitted OrderAutomorphisms(o, []) is used.

 


FindQuotientOfShapeEnumInit

Initializes an environment to enumerate certain subgroups

Syntax:

s := FindQuotientOfShapeEnumInit(G, L);

record
  s  
AbelianGroup
  G  
list
  L  
of integers describing the shape of the subgroup

See also:  FindQuotientOfShapeEnumNext

 


FindQuotientOfShapeEnumNext

Steps through the subgroups.

Syntax:

flag := FindQuotientOfShapeEnumNext(s [, 1]);

boolean
  flag  
record
  s  
generated by FindQuotientOfShapeEnumInit
if present find subgroups instead of quotients.
  1  

See also:  FindQuotientOfShapeEnumInit

 


Floor

Returns the maximal integer less than or equal to a given number.

Syntax:

y := Floor(x);

integer
  y  
real
  x  

See also:  Trunc, Round, Ceil

 


GPin

Reads an order in the pari/gp format.

Syntax:

o := GPin(name);
o := GPin();
o := GPin(f);

file
  f  
file opened for reading
string
  name  
filename
order
  o  
  **  

 


Galois

Computation of Galois groups.

Syntax:

Galois ( f [,p] [, "fast"] );
Galois ( o [,p] [, "fast"] );

Galois ( f , "complex" [, n] );
Galois ( o , "complex" [, n] );

GaloisT ( f [,p] [, "fast"] );
GaloisT ( o [,p] [, "fast"] );

GaloisT ( f , "complex" [, n] );
GaloisT ( o , "complex" [, n] );

polynomial
  f  
order
  o  
prime number
  p  
positive integer
  n  
precision

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

 


GaloisBlocks

Excluding unpossible Galois groups by blocks.

Syntax:

GaloisBlocks(o);
GaloisBlocks(o, true);

order
  o  

See also:  GaloisGroupsPossible, GaloisModulo, Galois

 


GaloisGlobals

Prints the current settings in the Galois group computation.

Syntax:

GaloisGlobals(o);

order
  o  

See also:  Galois, GaloisTree, GaloisRoots

 


GaloisGroupKnown

This function returns the Galois group if it is already set in the order or the algebraic function field. If the Galois group is not set false will be returned.

Syntax:

b:= GaloisGroupKnown(K);

int or false
  b  
order or algebraic function field
  K  

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

 


GaloisGroupOrder

Returns the order of the transitive permutation group.

Syntax:

GaloisGroupOrder(n, k);

integer
  n  
representing degree
integer
  k  
representing group in T-notation

See also:  Galois

 


GaloisGroupSet

Sets the number of the Galois group in the order or algebraic function field.

Syntax:

GaloisGroupSet(K, G);

order or algebraic function field
  K  
int
  G  

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

 


GaloisGroupsPossible

Handling of possible Galois groups.

Syntax:

L := GaloisGroupsPossible(o);
GaloisGroupsPossible(o, G, flag);
GaloisGroupsPossible(o, L, flag);

order
  o  
integer
  G  
representing transitive group in T-notation
list
  L  
of integers G
boolean
  flag  
whether to add or remove groups

See also:  Galois, GaloisTree, GaloisNumberToName

 


GaloisMSetPol

Computing of a polynomial of degree {n choose k} which roots are products of k distinct roots of f.

Syntax:

g:= GaloisMSetPol(f, k);

int
  k  
must be positive
polynomial
  f, g  

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName

 


GaloisMSumPol

Computing of a polynomial of degree {n choose k} which roots are sums of k distinct roots of f.

Syntax:

g:= GaloisMSumPol(f, k);

int
  k  
must be positive
polynomial
  f,g  

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

 


GaloisMissionS

Returns all non-trivial subfields of given degree m. If no m is specified, all subfields are calculated.

Syntax:

L := GaloisMissionS(o);
L := GaloisMissionS(o, m);

list
  L  
list of suborders
order
  O  
the given order
small integer
  m  
the prescribed degree of subfields

See also:  GaloisMissionS

 


GaloisModulo

Excluding impossible Galois groups by cycle types.

Syntax:

GaloisModulo(o, b);

order
  o  
integer
  b  
bound

See also:  Galois, GaloisBlocks, GaloisGroupsPossible, GaloisTree

 


GaloisNumberToName

Returns name of transitive permutation group.

Syntax:

GaloisNumberToName(n, k);

integer
  n  
representing degree
integer
  k  
representing group in T-notation

See also:  Galois

 


GaloisRing

missing shortdoc

Syntax:

L := GaloisRing(o);

order
  o  
list
  L  
of either the p-adic order, the prime (ideal) p and theexponent k or the complex field and the precesion

See also:  Galois

 


GaloisRoots

Returns current root ordering.

Syntax:

L := GaloisRoots(o);
L := GaloisRoots(o,k);

order
  o  
int
  k  
list
  L  
of list of roots and permutation

See also:  Galois

 


GaloisSymb

Computation of Galois groups

Syntax:

G := GaloisSymb(o);
G := GaloisSymb(F);
G := GaloisSymb(f);

string
  G  
order
  o  
algebraic function field
  F  
polynomial
  f  

See also:  Galois

 


GaloisSymb

Computation of the Galois group.

Syntax:

G := GaloisSymb(o|F|f);

string
  G  
order
  o  
algebraic function field
  F  
polynomial
  f  

See also:  Galois

 


GaloisSymbT

Computation of Galois groups

Syntax:

G := GaloisSymbT(o);
G := GaloisSymbT(F);
G := GaloisSymbT(f);

int
  G  
order
  o  
algebraic function field
  F  
polynomial
  f  

See also:  Galois

 


GaloisSymbT

Computation of the Galois group.

Syntax:

G := GaloisSymbT(o|F|f);

int
  G  
order
  o  
algebraic function field
  F  
polynomial
  f  

See also:  Galois

 


GaloisT

Computation of Galois groups.

Syntax:



See also:  Galois, GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlock

 


GaloisTree

Output of possible Galois groups as subgroup lattice.

Syntax:

L := GaloisTree(o);

order
  o  
list
  L  
list of two lists of integers

See also:  Galois, GaloisTreeRoots, GaloisGroupsPossible, GaloisNumberToName

 


GaloisTreeRoots

Return the roots of the tree of possible Galois groups.

Syntax:

L := GaloisTreeRoots(o);

order
  o  
list
  L  
list of two lists of integers

See also:  GaloisTree, Galois, GaloisGroupsPossible, GaloisNumberToName

 


GaloisTwoSequencePol

Computing of a polynomial of degree ncdot(n-1) which roots are products of two distinct roots of f.

Syntax:

g:= GaloisTwoSequencePol(f);

polynomial
  f, g  

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

 


Gamma

Returns the value of the \Gamma-function.

Syntax:

y := Gamma(x);

real
  y  
real
  x  

 


Gcd

Returns greatest common divisor of list of arguments.

Syntax:

gcd := Gcd(L);
gcd := Gcd(a, b);

integer or polynomial or ideal
  gcd  
list of integers of polynomials or ideals
  L  
integer or polynomial or ideal
  a  
integer or polynomial or ideal
  b  

See also:  IntGcd, PolyGcd

 


GetEnvironment

Returns the current value of the environment variable name (\name).

Syntax:

st := GetEnvironment(name);

string
  st  
string
  name  

 


HermiteUpperBound

Returns a upper bound for Hermite's constant \gamma_ n^ n (according to Blichfeldt Blich).

Syntax:

y := HermiteUpperBound(n);

real
  y  
integer
  n  

 


HurwitzZeta

Returns the value of the Hurwitz Zeta-function.

Syntax:

c := HurwitzZeta(s,v,m0);

complex
  s  
real
  v  
integer
  m0  
complex
  c  

 


Ideal

Creates an ideal defined by the arguments.

Syntax:

I := Ideal(e);
I := Ideal(o, n);
I := Ideal(e, f);
I := Ideal(n, e);
I := Ideal(o, M, d);
I := Ideal(o, MO);

Ideal
  I  
algebraic element
  e  
algebraic element
  f  
order over Z
  o  
matrix
  M  
of integers
integer
  d  
denominator of M
integer
  n  
module
  MO  
over the coefficient order of o

 


Ideal2EltAssure

The 2-element representation of the ideal is computed if it is not given yet.

Syntax:

Ideal2EltAssure(I);

ideal
  I  

See also:  IdealGenerators, IdealBasis

 


Ideal2EltIntAssure

The 2-element representation where the first generator is a rational integer of the ideal is computed if it is not given yet.

Syntax:

Ideal2EltIntAssure(I);

ideal
  I  

See also:  Ideal2EltAssure, Ideal2EltNormalAssure

 


Ideal2EltKnown

Returns true if the ideal is given in two element representation.

Syntax:

b := Ideal2EltKnown(I);

Boolean
  b  
ideal
  I  

See also:  IdealGenerators

 


Ideal2EltNormalAssure

Calculates a 2 element normal representation of an ideal.

Syntax:

Ideal2EltNormalAssure(I);

ideal
  I  

See also:  IdealGenerators

 


Ideal2EltNormalKnown

True if the ideal is given with normal two elements representation.

Syntax:

b := Ideal2EltNormalKnown(I);

Boolean
  b  
ideal
  I  

See also:  IdealGenerators

 


IdealAutomorphism

Applies an automorphism to an ideal.

Syntax:

B := IdealAutomorphism (A,i);

ideal
  B  
ideal
  A  
integer
  i  

See also:  EltAutomorphism, OrderAutomorphisms

 


IdealBasis

Returns the basis of an ideal.

Syntax:

M := IdealBasis(I);

ideal
  I  
list
  M  
two elements, the denominator and the representation matrix

See also:  IdealGenerators

 


IdealBasisKnown

Returns true if the ideal is given via a Z basis.

Syntax:

b := IdealBasisKnown(I);

Boolean
  b  
ideal
  I  

See also:  IdealBasis

 


IdealBasisLowerHNF

The basis of the ideal transformed in lower HNF

Syntax:

M:=IdealBasisLowerHNF(I);

list
  M  
two elements, the denominator and the basis matrix
ideal
  I  

See also:  IdealBasisUpperHNF, IdealLowerHNFTrans

 


IdealBasisUpperHNF

The basis of the ideal transformed in upper HNF.

Syntax:

M := IdealBasisUpperHNF(I);

list
  M  
two elements, the denominator and the basis matrix
ideal
  I  

See also:  IdealBasisLowerHNF, IdealUpperHNFTrans

 


IdealChineseRemainder

Chinese Remainder Theorem for number fields

Syntax:

beta := IdealChineseRemainder(a1, a2, alpha1, alpha2)

ideals
  a1, a2  
algebraic numbers
  alpha1, alpha2  
algebraic number
  beta  

See also:  EltApproximation, RayCantoneseRemainder

 


IdealClassRep

Computes a representation of the ideal class over the cyclic generators of the class group.

Syntax:

L := IdealClassRep(I);
L := IdealClassRep(I, "gen");

list
  L  
ideal
  I  

See also:  OrderClassGroup, IdealIsPrincipal, IdealRayClassRep

 


IdealCollection

Solves a special equation.

Syntax:

M := IdealCollection(I1,I2);

list
  M  
two lists of two elements of the order
ideals
  I1,I2  
integral, over a maximal order

See also:  ModuleSteinitz

 


IdealDegree

Calculates the degree of inertia of a prime ideal.

Syntax:

d := IdealDegree(I);

integer
  d  
ideal
  I  
must be prime

See also:  IdealRamIndex

 


IdealDen

The denominator of the ideal.

Syntax:

d := IdealDen(I);

ideal
  I  
integer
  d  

See also:  IdealIsIntegral

 


IdealDivisors

Computes all divisors of an ideal.

Syntax:

L := IdealDivisors (A);

list
  L  
ideal
  A  

 


IdealFactor

Returns the factorization of the given ideal over a maximal order.

Syntax:

F := IdealFactor(a);

list
  F  
ideal
  a  

See also:  Factor

 


IdealGen

missing shortdoc

Syntax:

g := IdealGen(I, i);

algebraic element
  g  
ideal
  I  
small integer
  i  
{\in{1,2}}

See also:  IdealGenerators, IdealBasis

 


IdealGenerators

Returns the 2 generators of the 2-element-representation of the ideal.

Syntax:

L := IdealGenerators(I);

ideal
  I  
list
  L  
of two algebraic numbers

See also:  IdealBasis

 


IdealIdempotents

Returns elements of the comaximal ideals which sum to 1.

Syntax:

E := IdealIdempotents(L)

list
  L  
of integral ideals over the same order
false or list
  E  
of algebraic elements over the same order

 


IdealImprove

Improves the generators of the ideal given in two element representation.

Syntax:

I1:= IdealImprove(I2);

ideal
  I1, I2  

See also:  IdealMin

 


IdealIntegrity

Checks the ideals for various inconsistencies

Syntax:

errcount = IdealIntegrity(I);

ideal
  I  
small integer
  errcount  
the number of detected errors

 


IdealIsIntegral

Checks if a (fractional) ideal is an integral (or true) ideal.

Syntax:

b := IdealIsIntegral(I);

boolean
  b  
Ideal
  I  

See also:  IdealDen

 


IdealIsPrime

Checks whether an ideal is a prime ideal. Returns true or false.

Syntax:

b := IdealIsPrime(I);

boolean
  b  
ideal
  I  
integral

See also:  orderidealisprimeideal

 


IdealIsPrincipal

Returns a principal generator of an ideal, if it is a principal ideal and false otherwise.

Syntax:

g := IdealIsPrincipal(I);
g := IdealIsPrincipal(I, classgroup);

ideal
  I  
false or algebraic number
  g  
principal generator

 


IdealLLL

Creates an ideal with LLL-reduced real basis

Syntax:

I := IdealLLL(a);

ideal
  I, a  

See also:  IdealBasisIdealGenerators

 


IdealLcm

Least common multiplier of 2 ideals.

Syntax:

I:=IdealLcm(I1, I2);

Ideals
  I, I1, I2  

 


IdealLowerHNFTrans

the transformation matrix from the original basis to the basis in lower HNF

Syntax:

M:=IdealLowerHNFTrans(I);

matrix
  M  
ideal
  I  

See also:  IdealBasisLowerHNF

 


IdealMakeCoprime

missing shortdoc

Syntax:

c := IdealMakeCoprime(A,B));

ideal
  A,B  
algebraic number
  c  

See also:  IdealMakeInvCoprime, IdealClassRep, OrderClassGroup

 


IdealMakeInvCoprime

Subroutine of OrderRelNfColl

Syntax:

a := IdealMakeInvCoprime(I1,I2);

ideals
  A, B  
must be integral
algebraic number
  a  

See also:  IdealMakeCoprime

 


IdealMin

The minimum of the ideal.

Syntax:

m:=IdealMin(I);

integer
  m  
ideal
  I  

See also:  IdealGen

 


IdealMove

Embeds one or more ideals into a given order.

Syntax:

I2 := IdealMove(I1, o);

same type as I1
  I2  
ideal | list of ideals
  I1  
order
  o  

See also:  EltMove

 


IdealNorm

Returns the norm of an ideal.

Syntax:

n := IdealNorm(I);

ideal
  I  
rational number
  n  

See also:  Norm, EltNorm

 


IdealOrder

This function returns the order of an ideal.

Syntax:

O := IdealOrder(I);

Order
  O  
Ideal
  I  

 


IdealPrimeCountInit

Initializes an environment for enumerating prime ideals

Syntax:

s := IdealPrimeCountInit(o[, m);

record
  s  
order
  o  
integer
  m  
only primes coprime to m are used.

See also:  IdealPrimeCountNext

 


IdealPrimeCountNext

Enumerates the next prime ideal.

Syntax:

p := IdealPrimeCountNext(s [, 1]);

prime ideal
  p  
record
  s  
from IdealPrimeCountInit
if present, p will be a pair [p, f] with p a prime of the coefficient order and f the degree of p
  1  

See also:  IdealPrimeCountInit

 


IdealPrimeElt

primitive element of an ideal

Syntax:

e:=IdealPrimeElt(I);

algebraic number
  e  
Ideal
  I  

See also:  IdealMin, IdealGen

 


IdealRadical

Computes a radical.

Syntax:

r := IdealRadical (A, O);

order
  O  
ideal
  A  
ideal
  r  

 


IdealRamIndex

Calculates the ramification index of a prime ideal.

Syntax:

d := IdealRamIndex(I);

ideal
  I  
must be prime
integer
  d  

See also:  IdealDegree

 


IdealRayClassRep

Returns a representive of the class of an ideal in the ray class group.

Syntax:

r := IdealRayClassRep(I,m0,minf);

matrix
  r  
ideal
  I  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  EltCon, OrderClassGroup, RayClassGroup, RayClassGroupCyclicFactors

 


IdealRemainderSet

Computes a remainder system of an ideal

Syntax:

L:= IdealRemainderSet(I);

list
  L  
ideal
  I  

See also:  IdealNorm

 


IdealResidueField

Returns the finite field defined by a prime ideal.

Syntax:

K := IdealResidueField(p);

ideal
  p  
finite field
  K  

See also:  IdealResidueFieldIsomorphism, EltToFFE, FFEToElt, RayResidueRing

 


IdealResidueFieldIsomorphism

Calculates the isomorphism between the residue fields of two prime ideals.

Syntax:

alpha := IdealResidueFieldIsomorphism(a,b);

algebraic element
  alpha  
ideal
  a  
ideal
  b  

See also:  IdealResidueField

 


IdealRingOfMultiplicators

Computes the ring of multiplicators of an ideal.

Syntax:

o := IdealRingOfMultiplicators (A);

order
  o  
ideal
  A  

 


IdealUpperHNFTrans

the transformation matrix from the original basis to the basis in upper HNF

Syntax:

M:=IdealUpperHNFTrans(I);

matrix
  M  
ideal
  I  

See also:  IdealBasisUpperHNF

 


IdealValuation

Computes the valuation of an ideal at a prime ideal.

Syntax:

val := IdealValuation(p, I);

ideal
  P  
must be prime
ideal
  I  
integer
  val  

See also:  IdealFactor

 


IdealWithNorm

Computed all ideals of o of a given norm n.

Syntax:

L := IdealWithNorm(n,o);

List
  L  
integer
  n  
>1
MaximalOrder
  o  

 


IdemLift

Lifts an idempotent.

Syntax:

alpha:=IdemLift(a, p, k);

algebraic element
  alpha  
algebraic element
  a  
integer
  p  
integer
  k  

 


Im

Returns the imaginary part of a complex number.

Syntax:

a := Im(z);

real
  a  
complex
  z  

See also:  Re

 


ImQuadFormCreate

Generates a quadratic form.

Syntax:

g:=ImQuadFormCreate(D,p);
g:=ImQuadFormCreate(D,[a,b,c]);

 


ImQuadHilbert

Determines the Hilbert class field of an imaginary quadratic field.

Syntax:

O := ImQuadHilbert(o [,repr] [,"roots"] );

order
  o  
imaginary quadratic field
list
  repr  
representants for the ideal classes of o
order
  O  
Hilbert class field

See also:  OrderHilbert, ImQuadRayField, RayClassField

 


ImQuadRayField

Determines the ray class field modulo ideal f over an imaginary quadratic field.

Syntax:

O := ImQuadRayField( f [,"char"  |  "field"  |  "maxord"] );

ideal
  f  
integral ideal in imaginary quadratic field
order
  O  
ray class field modulo f

See also:  RayClassField, ImQuadHilbert, OrderHilbert

 


Index

Computes the index of an algebraic element, an order or an alff order

Syntax:

I := Index (a);
I := Index (o);

coefficient ring element
  I  
algebraic element
  a  
order alff order
  o  

See also:  EltIndexOrderIndexAlffOrderIndex

 


InftyGcd

Computes a greatest common divisor with respect to the degree valuation.

Syntax:

c := InftyGcd(a, b);

quotient field elements
  a,b,c  

See also:  InftyVal, InftyQuotRem, InftyLcm

 


InftyLcm

Computes a least common multiple with respect to the degree valuation.

Syntax:

c := InftyLcm(a, b);

quotient field elements
  a,b,c  

See also:  InftyVal, InftyQuotRem, InftyGcd

 


InftyQuotRem

Computes quotient and remainder with respect to the degree valuation.

Syntax:

L := InftyQuotRem(a, b);

list
  L  
of q and r
quotient field elements
  a,b  

See also:  InftyVal, InftyGcd, InftyLcm

 


InftyVal

Returns the degree valuation of a rational function or a Puiseux series defined over a finite field.

Syntax:

n := InftyVal(a);

integer
  n  
quotient field element
  a  
of FF_q(x)

See also:  InftyQuotRem, InftyGcd, InftyLcm, AlffRoots

 


Insert

Insert an element into a list at a given position.

Syntax:

Insert(L, a, pos);

list
  L  
arbitrary object
  a  
integer
  pos  

 


IntDivisors

Returns a sorted list of all non-negative divisors of a rational integer.

Syntax:

L := IntDivisors(d);

list
  L  
integer
  d  

See also:  IntFactor

 


IntEulerPhi

Computes the Euler-\phi function of n, i.e. the number of coprime integers less than n.

Syntax:

a := IntEulerPhi(n);

integer
  a  
integer
  n  

 


IntFactor

Syntax:

F := IntFactor(d);

list
  F  
integer
  d  

See also:  Factor

 


IntGcd

Returns the non-negative greatest common divisor of two integers.

Syntax:

gcd := IntGcd (a1,a2);

integer
  gcd  
integer
  a1  
integer
  a2  

See also:  IntXGcd, IntLcm

 


IntIsPrime

Returns true iff the argument is a rational prime.

Syntax:

b := IntIsPrime(n)

boolean
  b  
integer
  n  

See also:  NextPrime

 


IntIsSquare

Returns true iff the argument is a square.

Syntax:

b := IntIsSquare(n)

boolean
  b  
integer
  n  

 


IntLcm

Returns the least positve common multiplier of two integers and zero if one of both is zero.

Syntax:

c := IntLcm(a, b);

integer
  c  
integer
  a  
integer
  b  

See also:  IntGcd, IntGcdEx

 


IntMoebiusMy

Computes the Moebius \mu-function.

Syntax:

a := IntMoebiusMy(n);

integers
  a, n  

See also:  IntDivisors

 


IntMoebiusMy

Computes the Moebius \mu-function.

Syntax:

a := IntMoebiusMy(n);

integers
  a, n  

See also:  IntDivisors

 


IntPowerMod

Returns the power of a given integer modulo an integer.

Syntax:

y := IntPowerMod(x, n, m);

integer
  y  
integer
  x  
integer
  n  
integer
  m  

 


IntPrimeDivisors

Returns a sorted list of all prime divisors of a rational integer.

Syntax:

L := IntPrimeDivisors(d);

list
  L  
integer
  d  

See also:  IntFactor

 


IntQuo

Returns the integer quotient of two integers.

Syntax:

q := IntQuo(a, b);

integer
  q  
integer
  a  
integer
  b  

 


IntRandomBits

Returns a random integerin the range 0 to 2^n-1. n must be >= 0.

Syntax:

y := IntRandomBits(n);

integer
  y  
small integer
  n  
  H  

 


IntRoot

Returns rfloor \sqrt[r]n \lfloor.

Syntax:

m := IntRoot(r, n)

boolean
  m  
integer
  n  
integer
  r  

 


IntToChar

Returns the integer with (ASCII) code i, where 0 <= i<256

Syntax:

c := IntToChar(i);

character
  c  
integer
  i  

See also:  CharToInt

 


IntValuation

Returns the p-adic valuation of an integer

Syntax:

v := IntValuation(p, n);

integer
  v  
integer
  p  
integer
  n  

See also:  IdealValuation, EltValuation

 


IntXGcd

Extended Euclidean algorithm.

Syntax:

G := IntXGcd (a1,a2);
G := IntXGcd (L);

list
  G  
integer
  a1  
integer
  a2  
list
  L  

See also:  IntGcd

 


IntZeta

Returns the value of the Riemann zeta-function

Syntax:

y := IntZeta(n);

real
  y  
integer distinct from 1
  n  

 


IntegralPoints

Computes all integral points on an elliptic curve in normal form.

Syntax:

L := IntegralPoints(k);
L := IntegralPoints(a,b);

list
  L  
integer
  k  
integer
  a  
integer
  b  

 


IsAlff

Returns whether an object is an algebraic function field.

Syntax:

b := IsAlff(F);

boolean
  b  
object
  F  

See also:  Alff

 


IsAlffDiff

Returns whether argument is an alff differential.

Syntax:

b := IsAlffDiff(a);

boolean
  b  
alff differential
  a  

See also:  AlffDiff

 


IsAlffDivisor

Returns true if and only if the parameter is an algebraic function field divisor.

Syntax:

b := IsAlffDivisor(D);

boolean
  b  
arbitrary object
  D  

See also:  IsAlffPlace, IsBound, Unbind

 


IsAlffElt

Returns true iff the argument is of type "KANT function field order elt".

Syntax:

b := IsAlffElt(T);

boolean
  b  
function field order element
  T  

 


IsAlffPlace

Returns whether an object is an algebraic function field place.

Syntax:

b := IsAlffPlace(P);

boolean
  b  
arbitrary object
  P  

See also:  IsBound, Unbind

 


IsChar

Returns true if the argument is a character, false otherwise.

Syntax:

b := IsChar(c);

character
  c  
boolean
  b  

See also:  IsString

 


IsEcc

Returns true iff the argument is an elliptic curve.

Syntax:

b := IsEcc(E);

boolean
  b  
  E   

 


IsElt

Returns true iff the argument is of type "KANT algebraic element".

Syntax:

b := IsElt(x);

boolean
  b  
  x  

 


IsFF

Returns whether object is a finite field or not.

Syntax:

b := IsFF(k);

boolean
  b  
object
  k  

See also:  FF

 


IsFFElt

Returns true iff the argument is of type "KANT finite field elt".

Syntax:

b := IsFFElt(a);

boolean
  b  
  a  

 


IsIdeal

Returns true iff the argument is an ideal.

Syntax:

b := IsIdeal(x);

boolean
  b  
  x  

 


IsInt

Returns true iff the argument is an integer.

Syntax:

b := IsInt(x);

boolean
  b  
  x   

See also:  TYPE, IsIdeal, IsPoly, IsOrder, IsElt,

 


IsLat

Returns true iff the argument is of type "KANT lattice".

Syntax:

b := IsLat(a);

boolean
  b  
  a  

 


IsMat

Test if an object is or is convertable into a matrix.

Syntax:

bool := IsMat(M);

a matrix-like object
  M  
a boolean if conversion is possible
  bool  

 


IsMat

Returns true iff the argument is of type "KANT matrix".

Syntax:

b := IsMat(x);

boolean
  b  
  x  

 


IsModule

Returns true iff the argument is a module.

Syntax:

b := IsModule(m);

boolean
  b  
object
  m  

 


IsOrder

Returns true iff the argument is an order.

Syntax:

b := IsOrder(x);

boolean
  b  
  x   

 


IsPoly

Returns true iff the argument is a polynomial.

Syntax:

b := IsPoly(f);

boolean
  b  
  f  

 


IsPrime

Returns true iff the argument is either a prime number or a prime ideal.

Syntax:

b := IsPrime(x);

boolean
  b  
  x  

 


IsQf

Returns whether object is a rational function field or not.

Syntax:

b := IsQf(k);

boolean
  b  
object
  k  

See also:  QuotientField, QfeQf

 


IsQp

Checks wether k is an element of a p-adic field.

Syntax:

b := IsQp(k);

p-adic element
  k  
boolean
  b  

See also:  Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpSqrt, QpValuation

 


IsQpElt

Returns true if an element is a p-adic field element.

Syntax:

b := IsQpELt(a);

p-adic element
  a  
boolean
  b  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpValuation

 


IsRecType

Returns true iff the argument is an record with an Type enry containing the correct string.

Syntax:

flag := IsRecType(a, type);

boolean
  flag  
anything
  a  
string
  type  

 


IsThue

Returns true iff the argument is a Thue object.

Syntax:

b := IsThue(x);

boolean
  b  
  x  

 


JBessel

Returns the value of the J-Bessel function.

Syntax:

z := JBessel(nu,x);

integer
  nu  
real
  x  
real
  z  

 


JacobiSymbol

Returns the Jacobi symbol of two integers.

Syntax:

y := JacobiSymbol(n, m);

integer
  n  
integer
  m  

 


KASHLEVEL

Reads or sets different defaults for KASH.

Syntax:

x := KASHLEVEL(s);
x := KASHLEVEL(s,level);

integer
  x  
string
  s  
integer
  level  

 


KBessel

Returns the value of the K-Bessel function.

Syntax:

z := KBessel(s,x);

complex
  s  
real
  x  
complex
  z  

 


LOFILES

Lists all open files, for debugging purposes only.

Syntax:

LOFILES();

 


Lat

Creates a (relative) lattice.

Syntax:

Lambda := Lat(M,["basis"|"gram"]);
Lambda := Lat(o [,"mink"|"unit"]);
Lambda := Lat(a);
Lambda := Lat(Delta,L);
Lambda := Lat(Delta,M [,"trans"|"basis"|"gram"]);
Lambda := Lat(Module);

lattice
  Lambda  
matrix
  M  
order
  o  
ideal
  a  
list
  L  
lattice
  Delta  

 


LatBasis

Return the basis of a lattice.

Syntax:

M := LatBasis(Lambda);

matrix
  M  
lattice
  Lambda  

 


LatCholesky

Returns a Cholesky type decompostion of the gram matrix of a lattice.

Syntax:

q := LatCholesky(Lambda);

matrix
  q  
lattice
  Lambda  

 


LatDisc

Computes the discriminant of a lattice.

Syntax:

disc := LatDisc(Lambda);

real
  disc  
lattice
  Lambda  

 


LatElt

Creates a lattice element.

Syntax:

a := LatElt(Lambda, L); a := LatElt(Lambda, v);

lattice elt
  a  
lattice
  Lambda  
list of reals
  L  
vector over reals
  v  

 


LatEltLength

Computes the length of a lattice element.

Syntax:

r := LatEltLength(a);

real
  r  
lattice elt
  a  

 


LatEltToList

missing shortdoc

Syntax:

L := LatEltToList(a);

list
  L  
lattice element
  a  

 


LatEltVec

Computes the corresponding point of the R^n.

Syntax:

v := LatEltVec(le);

vector
  v  
lattice element
  le  

 


LatEnum

Enumeration of lattice points.

Syntax:

ok := LatEnum(Lambda);

boolean
  ok  
lattice
  Lambda  

 


LatEnumElt

Returns the current element of an enumeration process.

Syntax:

a := LatEnumElt(Lambda);

lattice elt
  a  
lattice
  Lambda  

 


LatEnumLowerBound

Reads or sets the lower bound for enumeration.

Syntax:

lbound := LatEnumLowerBound(Lambda [,lbound]);

real
  lbound  
lattice
  Lambda  

 


LatEnumPrec

Sets the precision used by the enumeration function LatEnum.

Syntax:

s := LatEnumPrec(Lambda);
s := LatEnumPrec(Lambda,"short");
s := LatEnumPrec(Lambda,"long");

list
  s  
lattice
  Lambda  

 


LatEnumRefVec

Reads or sets a reference vector for enumeration.

Syntax:

v := LatEnumRefVec(Lambda [,v]);

vector
  v  
lattice
  Lambda  

 


LatEnumReset

Resets the enumeration environment of a lattice.

Syntax:

LatEnumReset(Lambda);

lattice
  Lambda  

See also:  LatEnum

 


LatEnumUpperBound

Reads or sets the upper bound for enumeration.

Syntax:

ubound := LatEnumUpperBound(Lambda [,ubound]);

real
  ubound  
lattice
  Lambda  

 


LatFinckeReduce

Performs a reduction on a lattice specially suited for enumeration.

Syntax:

Lambda2 := LatFinckeReduce(Lambda1);

lattice
  Lambda2  
lattice
  Lambda1  

 


LatGram

Computes the Gram matrix of a lattice.

Syntax:

M := LatGram(Lambda);

matrix
  M  
lattice
  Lambda  

 


LatLLL

Performs a LLL-reduction on a lattice.

Syntax:

Lambda2 := LatLLL(Lambda1);

lattice
  Lambda2  
lattice
  Lambda1  

 


LatShortestElt

Finds shortest elements in a lattice.

Syntax:

L := LatShortestElt(Lambda);
L := LatShortestElt(Lambda,m);
L := LatShortestElt(Lambda,"all");

list of lattice elements
  L  
lattice
  Lambda  
integer
  m  

 


LatSuccMins

Computes the successive minima of a lattice.

Syntax:

L := LatSuccMins(Lambda);

list
  L  
lattice
  Lambda  

 


Lcm

Returns least common multiple of list of arguments.

Syntax:

lcm := Lcm(L);
lcm := Lcm(a, b);

integer or polynomial or ideal
  lcm  
list of integers of polynomials or ideals
  L  
integer or polynomial or ideal
  a  
integer or polynomial or ideal
  b  

See also:  IntLcm, IdealLcm

 


Li

Returns the value of the logarithmic integral.

Syntax:

a := Li(b);

real
  a  
real or integer
  b  

 


ListApplyListAdd

Computes a linear combination.

Syntax:

a := ListApplyListAdd(L, S);

element
  a  
lists
  L, S  
of elements

See also:  ListApplyMatAdd

 


ListApplyMatAdd

Computes linear combinations.

Syntax:

S := ListApplyMatAdd(L, M);

lists
  S, L  
of elements
matrix
  M  
for linear combinations

See also:  ListApplyListAdd

 


ListSplit

Splits a list into equal parts. All parts but the last have equal length as specified by the parameter n >= 1.

Syntax:

S := ListSplit(L, n);

list
  S  
of lists of length <= n
list
  L  
to be split
integer
  n  
block length

See also:  IntDivisors

 


Log

Returns the principal value of the natural logarithm.

Syntax:

y := Log(x);
y := Log(b,x);

complex or real
  y  
complex or real or rational or integer
  x  
complex or real or rational or integer
  b  

See also:  Exp

 


Mat

Creates a matrix.

Syntax:

M := Mat([S,] L);

matrix
  M  
ring
  S  
list
  L  

See also:  IsMat

 


MatCharPoly

Returns the characteristic polynomial of a matrix.

Syntax:

f := MatCharPoly(M);

matrix
  M  
Polynomial
  f  

See also:  MatMinPoly

 


MatCoef

Returns the coefficient ring of a matrix.

Syntax:

S := MatCoef(M);

ring
  S  
matrix
  M  

See also:  Mat

 


MatCols

Returns the number of columns of a matrix.

Syntax:

n := MatCols(M);

integer
  n  
matrix
  M  

See also:  MatRows

 


MatDet

Computes the determinant of a square matrix.

Syntax:

d := MatDet(M);d := MatDet(M, bound);

element of the ring the matrix entries come from
  d  
matrix
  M  

 


MatDiag

missing shortdoc

Syntax:

M := MatDiag(S, L);

matrix
  M  
ring
  S  
list
  L  
diagonal entries

 


MatEchelon

Returns the rank and an upper row echelon form of a matrix together with a transformation matrix. If the echelon form cannot be computed over the ring, it is computed over its field of fractions.

Syntax:

L := MatEchelon(M);

list
  L  
matrix
  M  

 


MatElt

Returns or modifies an matrix entry or row.

Syntax:

a := MatElt(M, row, col);
a := M[row][col];
M[row][col] := a;
r := M[row];
M[row] := L;

element of the ring the matrix entries come from
  a  
matrix
  M  
small integer
  row  
small integer
  col  
an object of the type "KANT matrow"
  r  
either a list, a "KANT matrix", or a "KANT matrow"
  L  

 


MatHermiteColLower

missing shortdoc

Syntax:

H := MatHermiteColLower(M);

matrix
  H  
matrix
  M  

 


MatHermiteColLowerTrans

Computes the lower column Hermite normal form together with a transformation matrix.

Syntax:

L := MatHermiteColLowerTrans(M);

list
  L  
matrix
  M  

 


MatHermiteColModUpper

Computes the modular upper column Hermite normal form of an integer matrix.

Syntax:

H := MatHermiteColModUpper(k, M);

matrix
  H  
integer
  k  
matrix
  M  

 


MatHermiteColUpper

missing shortdoc

Syntax:

H := MatHermiteColUpper(M);

matrix
  H  
matrix
  M  

 


MatHermiteColUpperTrans

Computes the upper column Hermite normal form together with a transformation matrix.

Syntax:

L := MatHermiteColUpperTrans(M [,"int"]);

list
  L  
matrix
  M  

 


MatHermiteRowMod

Computes the modular row Hermite normal form of an integer matrix.

Syntax:

H := MatHermiteRowMod(k, M);

matrix
  H  
integer
  k  
matrix
  M  

 


MatId

Returns the identity matrix of given dimension.

Syntax:

I := MatId(S, n);

matrix
  I  
ring
  S  
small integer
  n  

 


MatIndex

Computes the determinant of a row normal form of an integral matrix.

Syntax:

n := MatIndex(m);

integer
  n  
index
matrix
  m  
over Z

 


MatInv

Returns the inverse matrix (if possible).

Syntax:

A := MatInv(M);

matrix
  A  
matrix
  M  

 


MatKernel

Returns a basis for the kernel of the given matrix.

Syntax:

K := MatKernel(M);
K := MatKernel(M, d);

matrix
  K  
matrix
  M  
integer
  d  

 


MatLLL

Performs an LLL reduction on the columns of an integer or real matrix.

Syntax:

L := MatLLL(M [,r]);
L := MatLLL(M,"short" | "long" [,r]);

list of A, T
  L  
matrix
  M  
LLL constant (default 0.75)
  r  

 


MatMLLL

Performs an MLLL reduction on the columns of an integer or real matrix.

Syntax:

L := MatLLL(M);

list
  L  
matrix
  M  

 


MatMinPoly

Returns the minimal polynomial of a matrix.

Syntax:

f := MatMinPoly(M);

matrix
  M  
Polynomial
  f  

See also:  EltMinPoly, MatCharPoly

 


MatMove

missing shortdoc

Syntax:

V := MatMove (M, r);

matrix
  V  
matrix
  M  
ring
  r  

See also:  PolyMove, EltMove

 


MatRows

Returns the number of rows of a matrix.

Syntax:

n := MatRows(M);

integer
  n  
matrix
  M  

See also:  MatCols

 


MatSmith

missing shortdoc

Syntax:

L := MatSmith(M);

list
  L  
matrix
  M  

 


MatSmithTrans

Computes the Smith normal form together with transformation matrices.

Syntax:

L := MatSmithTrans(M);

list
  L  
matrix
  M  

 


MatSolve

Solves a linear equation.

Syntax:

L := MatSolve (A, b);
L := MatSolve(A, b, N);

list
  L  
matrix
  A  
matrix
  b  
integer
  N  
a module

 


MatSym

missing shortdoc

Syntax:

M := MatSym(S, L);

matrix
  M  
ring
  S  
list
  L  

 


MatSymDiag

missing shortdoc

Syntax:

L := MatSymDiag (A);

list
  L  
matrix
  A  

 


MatToColList

Returns a list of the columns.

Syntax:

L := MatToColList(M);

list
  L  
matrix
  M  

 


MatToRowList

Returns a list of the rows.

Syntax:

L := MatToRowList(M);

list
  L  
matrix
  M  

 


MatTrace

Computes the trace of a matrix.

Syntax:

t := MatTrace(M);

element of the ring the matrix elements come from
  t  
matrix
  M  

 


MatTrans

Returns the tranpose of a matrix.

Syntax:

A := MatTrans(M);

matrix
  A  
matrix
  M  

 


Min

Computes the minimum of an ideal.

Syntax:

n := Min(a);

int | rational | ideal
  n  
ideal
  a  

 


MinPoly

Computes the minimal polynomial of an algebraic element, a matrix, or an alff element

Syntax:

p := MinPoly (a [,PA]);
p := MinPoly (a [,O]);
p := MinPoly( M );
p := MinPoly(a);

polynomial
  p  
polynomial algebra
  PA  
suborder
  O  
algebraic element alff order element
  a  
matrix
  M  

See also:  EltMinPolyMatMinPolyAlffEltMinPoly

 


Module

Creates a module over an order.

Syntax:

M1 := Module([IL,] M);
M1 := Module(EL);

module
  M1  
list
  IL  
of ideals over a maximal order O
matrix
  M  
of algebraic elements over O
list
  EL  
of relative algebraic elements of o

See also:  ModuleIdeals, ModuleMatrix, ModuleOrder

 


ModuleDen

Returns the denominator of the given module.

Syntax:

den := ModuleDen(M);

integer
  den  
module
  M  

 


ModuleDet

Returns the determinant of the given module.

Syntax:

det := ModuleDet(M)

module
  M  
ideal
  det  

See also:  ModuleModul

 


ModuleDual

Computes the dual module of the given module.

Syntax:

M2 := ModuleDual( M1 );

modules
  M1, M2  

See also:  ModuleIntersection

 


ModuleId

Returns the trivial module over an order with a certain degree.

Syntax:

m := ModuleId(o, n);

Module
  m  
order
  o  
positive integer
  n  
the degree

 


ModuleIdeals

Retrieves the coefficient ideals of the module representation.

Syntax:

L := ModuleIdeals(M);

list
  L  
of ideals
module
  M  

See also:  Module, ModuleMatrix

 


ModuleIntersection

Computes the intersection of two modules.

Syntax:

M :=ModuleIntersection(M1, M2 [,d | I] [,"PBNF"] [,"lower"] );

modules
  M, M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  ModuleConcat, ModuleNF

 


ModuleIntersectionVS

Computes the intersection of a module and a VS.

Syntax:

M :=ModuleIntersectionVS(M1, mat );

modules
  M, M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  ModuleConcat, ModuleNF

 


ModuleMap

Computes the image and kernel under the multiplication by map

Syntax:

L :=ModuleMap(M1, mat [ , "nf" | "kernel" ] );

modules
  M, M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  ModuleConcat, ModuleNF

 


ModuleMatrix

Retrieves the matrix of the module representation.

Syntax:

m := ModuleMatrix(M);

matrix
  m  
module
  M  

See also:  Module

 


ModuleMember

Tests if a column vector is element of the given module.

Syntax:

L:=ModuleMember(M,V|EL);

list
  L  
see below
module
  M  
vector
  V  
list
  EL  
of n algebraic elements of O

 


ModuleModul

Returns an ideal which can be used for reduction.

Syntax:

a := ModuleModul(M)

ideal
  a  
module
  M  

See also:  ModuleDet, ModuleDen

 


ModuleMove

Changes the coefficient order of the module.

Syntax:

M2 := ModuleMove(M1, o);

same type as M1
  M2  
module | list of modules
  M1  
order
  o  

See also:  EltMove, IdealMove

 


ModuleNF

Computes a normal form of the given module.

Syntax:

M2 := ModuleNF(M1 [,d|I] [,"PBNF"] [,"lower"] );

modules
  M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  Module

 


ModuleOrder

Retrieves the order over which the module is defined.

Syntax:

o := ModuleOrder(M);

order
  o  
module
  M  

See also:  Module

 


ModuleSmith

Computes the structure of the quotient module.

Syntax:

L :=ModuleSmith(M1, M2, ["U" | "V" | "UV" );

modules
  M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  ModuleConcat, ModuleNF

 


ModuleSteinitz

Computes a Steinitz form of the given module.

Syntax:

M2 := ModuleSteinitz(M1);

modules
  M1, M2  

See also:  Module

 


ModuleUnion

Computes the union of two modules.

Syntax:

M :=ModuleUnion(M1, M2 [,d|I] [,"PBNF"] [,"lower"] );

modules
  M, M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  ModuleConcat, ModuleNF

 


Move

Moves an object to another structure (order, ring)

Syntax:

a := Move(L, O);
N := Move(M, r);
a := Move(f, r)

integer or polynomial or ideal
  a  
list of integers of polynomials or ideals
  L  
Order
  O  
matrix
  N, M  
polynomial
  f  
ring
  r  

See also:  EltMove, IdealMove, ModuleMove, MatMove, PolyMove, FFEltMove

 


MultiCounterInc

Increments a multi counter subject to a bound.

Syntax:

b := MultiCounterInc(L, n);

boolean
  b  
list
  L  
integer | list
  n  

See also:  MultiCounterInit

 


MultiCounterInit

Initializes a multi counter.

Syntax:

L := MultiCounterInit(n);

list
  L  
integer
  n  

See also:  MultiCounterInc

 


NextPrime

Returns the smallest rational prime greater a given rational integer.

Syntax:

p := NextPrime(n);

integer
  p  
integer
  n  

 


Nice

If called with no parameter, this function returns the current priority (nice) value. Otherwise the priority (nice) value is set to the parameter.

Syntax:

Nice(v);
v := Nice();

small integer
  v  

 


Norm

Computes the norm of an algebraic number, an ideal, a polynomial or an alff element or divisor.

Syntax:

n := Norm(a);
n := Norm(b, o);

int | rational | algebraic number | polynomial
  n  
algebraic element | ideal | polynomial | alff element | ff element
  a  
algebraic element | ff element
  b  
order
  o  

 


Num

Returns the numerator of an object.

Syntax:

d := Num( q );
d := Num( a );
d := Num(I);

integer
  d  
quotient field element or polynomial
  d  
rational
  q  
algebraic function field order element
  a  
algebraic element
  a  
quotient field element or polynomial
  q  
ideal
  I  

 


Open

(Re)opens a file.

Syntax:

f := Open(name, mode);
ok := Open(f);

File
  f  
string
  name  
string
  mode  
boolean
  ok  

See also:  BagRead, BagWrite, Close, ECHOon, ECHOoff, FLDin, FLDout, LOFILES

 


Order

Returns the order defined by the given arguments.

Syntax:

o1 := Order (f);
o1 := Order (o,d,alpha);
o1 := Order (o,T,d);
o1 := Order (o,T,L);
o1 := Order (o,L);

order
  o1  
order
  o  
polynomial
  f  
integer
  d  
matrix
  T  
algebraic element
  alpha  
list
  L  

 


OrderAbs

Creates an absolute extension from a simple relative extension or creates a simple relative extension from a double relative extension.

Syntax:

Oa := OrderAbs(O);
Oa := OrderAbs(O,"no hom");

order
  Oa  
order
  O  

See also:  OrderInstallHom

 


OrderAutomorphisms

Computes or stores automorphisms of the given extension.

Syntax:

aut := OrderAutomorphisms(o);
aut := OrderAutomorphisms(o, L);
aut := OrderAutomorphisms(o, "normal");
aut := OrderAutomorphisms(o, "abel");

list
  aut  
list of automorphisms
order
  o  
the given order
list
  L  
list of some known automorphisms

See also:  EltAutomorphism, OrderAutomorphismsAbel, OrderAutomorphismsNormal

 


OrderAutomorphismsAbel

Computes of the given Abelian extension.

Syntax:

aut := OrderAutomorphismsAbel(o);

logical
  aut  
IsAbelian
order
  o  
the given order

See also:  EltAutomorphism, OrderAutomorphisms, OrderAutomorphismsNormal

 


OrderAutomorphismsNormal

Computes automorphisms of the given normal extension.

Syntax:

aut := OrderAutomorphismsNormal(o);

list
  aut  
list of automorphisms
order
  o  
the given order

See also:  EltAutomorphism, OrderAutomorphisms, OrderAutomorphismsAbel

 


OrderBach

Returns the value of the floor function of the Bach bound of the algebraic number field which is generated by the given order.

Syntax:

b := OrderBach(O);

integer
  b  
order
  O  

See also:  OrderMinkowski

 


OrderBasis

Returns a basis whose elements are elements of the given order with a denominator.

Syntax:

L := OrderBasis(o);
L := OrderBasis(o, O);

list of algebraic elements
  L  
order
  o  
order
  O  

See also:  OrderCoefIdeals

 


OrderBasisIsPower

Returns true iff the given order is an equation order.

Syntax:

B := OrderBasisIsPower(o);

boolean
  B  
order
  o  

See also:  OrderBasisIsRel, OrderEquationOrder

 


OrderBasisIsRel

Returns true iff the basis of an order is given by a transformation matrix.

Syntax:

b := OrderBasisIsRel(o);

boolean
  b  
order
  o  

See also:  OrderBasisIsPower, OrderEquationOrder

 


OrderClassGroup

Computes the class group.

Syntax:

L := OrderClassGroup( O [,b] [,"fast"] [,"Euler"] );

list
  L  
order
  O  
integer
  b  

See also:  OrderClassGroupCheck, OrderClassGroupCyclicFactors, IdealClassRep, IdealIsPrincipal

 


OrderClassGroupCheck

Checks the results of class group computations done by using the Euler product.

Syntax:

OrderClassGroupCheck(o, [[lb,] ub ]  |  [p, "pmax"]);

order
  o  
integer
  ub  
upper resp.~ lower bound
integer
  p  
prime number

See also:  OrderClassGroup

 


OrderClassGroupCyclicFactors

Returns a list with the generators of the cyclic factors.

Syntax:

L := OrderClassGroupCyclicFactors(O);

list
  L  
order
  O  

See also:  OrderClassGroup, OrderClassGroupCyclicFactorsPrincipal

 


OrderClassGroupCyclicFactorsPrincipal

Returns a list of the generators of the cyclic factors of the class group to the power of their orders.

Syntax:

L := OrderClassGroupCyclicFactorsPrincipal(O, ["raw"]);

list
  L  
order
  O  

See also:  OrderClassGroup, OrderClassGroupCyclicFactors

 


OrderClassGroupFactorBasisProve

Checks whether a small factorbasis generates the same subgroup of the classgroup as a large factorbasis.

Syntax:

r := OrderClassGroupFactorBasisProve(o, lb, ub);

boolean
  r  
order
  o  
integer
  lb, ub  
lower resp.~upper bound

See also:  OrderClassGroup

 


OrderCoefIdeals

Returns the list of coefficient ideals of a relative order.

Syntax:

L := OrderCoefIdeals(o);

list of ideals
  L  
relative order
  o  

See also:  OrderBasis

 


OrderCoefOrder

Returns the coefficient ring of a given order.

Syntax:

c := OrderCoefOrder(o);

order, ring of integers
  c  
order
  o  

See also:  OrderEquationOrder, OrderSubOrder

 


OrderCyclotomic

Computes the n'th cyclotomic field.

Syntax:

o := OrderCyclotomic(n);

order
  o  
integer
  n  

 


OrderCyclotomicRealSubfield

Computes the maximal real subfield of the n'th cyclotomic field.

Syntax:

o := OrderCyclotomicRealSubfield(n);

order
  o  
integer
  n  

 


OrderDeg

Returns the relative degree of the given order.

Syntax:

d := OrderDeg(o);

integer
  d  
order
  o  

See also:  OrderDegAbs

 


OrderDegAbs

Returns the absolute degree of the given order.

Syntax:

d := OrderDegAbs(o);

integer
  d  
order
  o  

See also:  OrderDeg

 


OrderDisc

Returns the discriminant of the given order.

Syntax:

D := OrderDisc(o);

integer or ideal
  D  
order
  o  
over Z or over a maximal order

See also:  OrderDisc, PolyDisc

 


OrderEquationOrder

Returns the equation suborder of the given order.

Syntax:

oe := OrderEquationOrder(o);

order
  oe  
order
  o  

See also:  OrderBasisIsPower, OrderBasisIsRel

 


OrderExcepSequence

Computes a sequence of exceptional units of maximal length in a given order.

Syntax:

L := OrderExcepSequence (o);

list
  L  
exceptional sequence
order
  o  

See also:  OrderUnitsExcep

 


OrderFincke

Computes or sets the Fincke constants.

Syntax:

OrderFincke(o);
OrderFincke(o, x);
OrderFincke(o, x, y);

order
  o  
real
  x  
real
  y  

See also:  OrderNormEquation

 


OrderGalois

Computation of Galois groups.

Syntax:



See also:  Galois, GaloisT, GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

 


OrderIndex

Returns the index of the given order relative to its suborder.

Syntax:

I := OrderIndex(o);

integer
  I  
order
  o  

See also:  OrderDisc

 


OrderIndexFormEquation

Solves an index form equation.

Syntax:

L := OrderIndexFormEquation(o,index);

list
  L  
order
  o  
integer
  index  

See also:  EltIndex

 


OrderInstallHom

Installs an embedding from the first given order into the second given order.

Syntax:

OrderInstallHom(o1,o2,alpha);
OrderInstallHom(o1,o2,b);

order
  o1  
order
  o2  
algebraic element
  alpha  
boolean
  b  

 


OrderIsMaximal

Tests whether the given order is known to be maximal or not.

Syntax:

B := OrderIsMaximal(o);

boolean
  B  
order
  o  

See also:  OrderSetMaximal

 


OrderIsSubfield

Tests Quo( o|1)\subseteq Quo( o|2).

Syntax:

OrderIsSubfield(o1, o2);

order
  o1  
order
  o2  

 


OrderKextDisc

Computes the relative discriminant of a Kummer extension of prime degree.

Syntax:

disc := OrderKextDisc(F);

ideal
  disc  
order
  F  

 


OrderKextGenAbs

Computes a set of absolute generators for the ring of integers.

Syntax:

Gen := OrderKextGenAbs(F);

list
  Gen  
of algebraic elements
order
  F  

 


OrderKextGenRel

Computes relative generators for the ring of integers.

Syntax:

Gen := OrderKextGenRel(F);

list
  Gen  
of algebraic elements
order
  F  

See also:  OrderKextGenRel, OrderKextDisc

 


OrderKextModularPower

Computes a maximal exponent.

Syntax:

L := OrderKextModularPower(pI, mu);

list
  L  
containing alpha and l
ideal
  pI  
a prime ideal
algebraic element
  mu  

 


OrderLLL

Creates an order with LLL-reduced basis.

Syntax:

o1 := OrderLLL(O);

order
  o1  
order
  o  

 


OrderMaximal

Returns the maximal overorder of an order.

Syntax:

O := OrderMaximal( def);
O := OrderMaximal( def, str);

order
  O  
see below
   def  
up to 4 optional strings
   str  

See also:  OrderPMaximal, Order

 


OrderMerge

Computes extension fields which contain the given ones.

Syntax:

L := OrderMerge(o1,o2);

list
  L  
return value
order
  o1  
order
  o2  

 


OrderMinIdeal

Computes a non-zero integral ideal of smallest norm.

Syntax:

a := OrderMinIdeal (o);

ideal
  a  
order
  o  

 


OrderMinkowski

Returns the floor of the Minkowski bound of the algebraic number field which is generated by the given order.

Syntax:

m := OrderMinkowski(O);

integer
  m  
order
  O  

See also:  OrderBach

 


OrderNormEquation

Solves a (relative) norm equation.

Syntax:

L := OrderNormEquation(o, a [,n | "all" [,"exact" | "abs" | "ineq"]]);

list
  L  
int | element of the coefficient ring
  a  
int
  n  

See also:  Solve

 


OrderPMaximal

Computes the p-maximal overorder of an order.

Syntax:

op := OrderPMaximal(o,p, str);
op := OrderPMaximal(o,p,b, str);

order
  op  
order
  o  
rational prime or prime ideal
  p  
integer
  b  
up to 3 optional strings
   str  

See also:  OrderMaximal, Order

 


OrderPoly

Returns the defining polynomial of the associated equation order

Syntax:

f := OrderPoly(P,o);
f := OrderPoly(o);

polynomial
  f  
polynomial algebra
  P  
order | algebraic function field order
  o  

See also:  OrderEquationOrder, AlffOrderDeg, Alff

 


OrderPolyHenselLift

Calculates a p-adic factorization of the defining polynomial of an order.

Syntax:

L := OrderPolyHenselLift(o, d, p, k);

list
  L  
order
  o  
integer
  d  
prime
  p  
integer
  k  

 


OrderPrec

Sets or returns the internal precision for calculations in orders.

Syntax:

P := OrderPrec(p);
P := OrderPrec();
L := OrderPrec(o,p);
L := OrderPrec(o,p,u);
L := OrderPrec(o);

small integer
  P  
small integer
  p  
order
  o  
small integer
  u  
list
  L  
precisions of both real rings belonging to o

See also:  Prec

 


OrderPrintFlags

Set or get Flags to reduce or extend the output level of print_order.

Syntax:

OrderPrintFlags(a);
a := OrderPrintFlags();

record
  a  

 


OrderReg

Returns the regulator of the current maximal system of independent units.

Syntax:

x := OrderReg(o);
x := OrderReg(o,"classgroup");
x := OrderReg(o, reg);

real
  x  
order
  o  
real
  reg  

See also:  OrderRegLowBound, OrderUnitsFund, OrderUnitsIndep

 


OrderRegLowBound

Returns a lower bound for the regulator of the given order.

Syntax:

x := OrderRegLowBound(o);
x := OrderRegLowBound(o, reg);

real
  x  
order
  o  
real
  reg  

See also:  OrderReg

 


OrderRelNormEq

Calculates an element of given norm.

Syntax:

elt := OrderRelNormEq(O,n [, "true"]);

order
  O  
list
  elt  
list of elements in O
element
  n  
element in coefficient ring of O

 


OrderRelUnits

Computes the relative units.

Syntax:

L := OrderRelUnits(o [,S  |  I] [,"raw"]);

list
  L  
of L1, T, hs or L2, hs
list
  L1  
of algebraic integers
list
  L2  
of S-units
matrix
  T  
transformation matrix
integer
  hs  
S-class number
order
  o  
list
  S  
of pairwise distinct prime ideals.
ideal
  I  

See also:  OrderSUnits

 


OrderRelativeOrder

Computes a relative representation of the given orders.

Syntax:

Or := OrderRelativeOrder(O, o);

order
  Or  
order
  O  
order
  o  

See also:  OrderAbs

 


OrderSUnits

Computes the S-unit group.

Syntax:

L := OrderSUnits(o [,S  |  I] [,"raw"]);

list
  L  
of L1, T, hs or L2, hs
list
  L1  
of algebraic integers
list
  L2  
of S-units
matrix
  T  
transformation matrix
integer
  hs  
S-class number
order
  o  
list
  S  
of pairwise distinct prime ideals.
ideal
  I  

See also:  OrderClassGroup, OrderClassGroupCheck, OrderSUnitsPositive

 


OrderSUnitsPositive

Returns a list of positive S-units

Syntax:

P := OrderSUnitsPositive(L);

list
  P  
list
  L  

See also:  OrderSUnits, OrderUnitsFund, EltMinkowski

 


OrderSetMaximal

Sets the OrderIsMaximal flag in the given order.

Syntax:

OrderSetMaximal(o);
OrderSetMaximal(o,flag);

order
  o  
optional boolean
  flag  

See also:  OrderIsMaximal

 


OrderSetTorsionUnit

Sets a generator of the torsion unit group in the given order.

Syntax:

OrderSetTorsionUnit(o,alpha,r);

order
  o  
algebraic element
  alpha  
integer
  r  
rank

See also:  OrderTorsionUnit, OrderTorsionUnitRank

 


OrderShort

Tries to find a "better" primitive polynomial for the given order.

Syntax:

o1 := OrderShort(o);
o1 := OrderShort(o, modus);
o1 := OrderShort(o, modus, iterations);

order
  o1  
order
  o  
integer
  modus  
integer
  iterations  

See also:  Order

 


OrderShortAbs

Creates an absolute extension from a simple relative extension and tries to find a "good" primitive polynomial for the given order.

Syntax:

Oa := OrderShortAbs(O);

order
  Oa  
order
  O  

See also:  OrderShort, OrderAbs

 


OrderSig

Returns the signature of the number field defined by the given order.

Syntax:

L := OrderSig(o);

list
  L  
order
  o  

See also:  PolySig

 


OrderSimplify

Returns the given order in a simplified representation.

Syntax:

o1 := OrderSimplify(o);

order
  o1  
order
  o  

See also:  OrderTransformationMatrix, Order

 


OrderSplittingField

Computes the normal closure of an algebraic number field.

Syntax:

O := OrderSplittingField (o);

order
  O  
order
  o  

 


OrderSubOrder

Returns a suborder of the given order.

Syntax:

os := OrderSubOrder(o);

order or boolean
  os  
order
  o  

See also:  OrderEquationOrder, OrderCoefOrder

 


OrderSubfield

Returns all non-trivial subfields of given degree m. If no m is specified, all subfields are calculated.

Syntax:

L := OrderSubfield(o);
L := OrderSubfield(o, m);

list
  L  
list of suborders
order
  O  
the given order
small integer
  m  
the prescribed degree of subfields

See also:  OrderSubfieldSub

 


OrderSubfieldSub

Calculates subfields with specified block systems.

Syntax:

L := OrderSubfieldSub(o, p);
L := OrderSubfieldSub(o, p, d);
L := OrderSubfieldSub(o, p, d, L1);

list
  L  
order
  o  
integer
  p  
integer
  d  
list
  L1  

See also:  OrderSubfield

 


OrderTorsionUnit

Returns a generator for the group of torsion units of the given order.

Syntax:

u := OrderTorsionUnit(o);

algebraic element
  u  
order
  o  

See also:  OrderSetTorsionUnit, OrderTorsionUnitRank

 


OrderTorsionUnitRank

Returns the number of roots of unity in the given order.

Syntax:

r := OrderTorsionUnitRank(o);

integer
  r  
number of roots of unity
order
  o  

See also:  OrderTorsionUnit, OrderSetTorsionUnit

 


OrderTraceMat

Returns the trace matrix of the order.

Syntax:

M := OrderTraceMat(o);

Matrix
  M  
order
  o  

 


OrderTransformationMatrix

Returns a list containing information about the transformation from a suborder of the given order to the given order.

Syntax:

L := OrderTransformationMatrix(O);

list
  L  
order
  O  

See also:  OrderBasis, OrderCoefIdeals, Order

 


OrderUnitsAreFund

Tests whether the current unit system of the given order is known to be fundamental or not.

Syntax:

b := OrderUnitsAreFund(o);
b := OrderUnitsAreFund(o,c);

boolean
  b, c  
order
  o  

See also:  OrderUnitsFund

 


OrderUnitsEquation

Solves a unit equation.

Syntax:

L := OrderUnitsEquation (alpha,beta,gamma);
L := OrderUnitsEquation (alpha,beta);

list
  L  
algebraic elements
  alpha, beta, gamma  

See also:  OrderUnitsExcep

 


OrderUnitsExcep

Computes all exceptional units of an order.

Syntax:

L := OrderUnitsExcep(o);
L := OrderUnitsExcep(o,"orbits"|"list");
n := OrderUnitsExcep(o,"number");

list
  L  
integer
  n  
order
  o  

See also:  EltExcepUnitOrbit, OrderExcepSequence, OrderUnitsEquation

 


OrderUnitsFund

Returns a list whose entries are a maximal set of fundamental units (algebraic numbers) of the given order.

Syntax:

L := OrderUnitsFund(o);

list
  L  
order
  o  

See also:  OrderSUnits, OrderSUnitsPositive

 


OrderUnitsIndep

Computes a maximal system of independent units.

Syntax:

L := OrderUnitsIndep(o);
L := OrderUnitsIndep(o,"classgroup");
L := OrderUnitsIndep(o,"classgroup","list");

list
  L  
order
  o  

See also:  OrderUnitsFund, OrderClassGroup

 


OrderUnitsLLL

Computes a LLL reduced system of independent units.

Syntax:

OrderUnitsLLL (O);

order
  O  

See also:  OrderLLL, OrderUnitsPFund

 


OrderUnitsMerge

Extends a system of units of the given order.

Syntax:

B := OrderUnitsMerge(o,eta);
B := OrderUnitsMerge(o,eta,"append");

boolean
  B  
order
  o  
algebraic element
  eta  
a unit in o

 


OrderUnitsPFund

Computes the p maximal overgroup of the units in the given order.

Syntax:

OrderUnitsPFund (O,p);

order
  O  
rational prime
  p  

See also:  OrderUnitsFund

 


PRINTLEVEL

Reads or sets the printlevel for a certain function.

Syntax:

x := PRINTLEVEL(s);
x := PRINTLEVEL(s,level);
x := PRINTLEVEL("all",level);

small integer
  x  
string
  s  
small integer
  level  

 


Poly

Creates a polynomial.

Syntax:

f := Poly(A, L);

polynomial
  f  
polynomial algebra
  A  
list
  L  

See also:  PolyAlg

 


PolyAlg

Creates a univariate polynomial algebra over a ring or returns the polynomial algebra of a polynomial.

Syntax:

Sx := PolyAlg(S [, name]);

polynomial algebra
  Sx  
ring or polynomial
  S  
string
  name  

See also:  Poly, PolyAlgCoef, Zx

 


PolyAlgCoef

Returns the coefficient ring of a polynomial algebra.

Syntax:

S := PolyAlgCoef(Sx);

ring
  S  
polynomial algebra
  Sx  

See also:  PolyAlg

 


PolyDeg

Returns the degree of a given polynomial.

Syntax:

n := PolyDeg(f);

integer
  n  
polynomial
  f  

 


PolyDeriv

Returns the derivative of a given polynomial.

Syntax:

h := PolyDeriv(f);

polynomial
  h  
polynomial
  f  

 


PolyDisc

Returns the discriminant of a polynomial.

Syntax:

d := PolyDisc(f);

discriminant (integer or finite field element)
  d  
polynomial
  f  

See also:  PolyRedDisc

 


PolyFactor

Returns the factorization of the given polynomial.

Syntax:

F := PolyFactor(f);
F := PolyFactor(f, p);
F := PolyFactor(f, p, m);

list
  F  
polynomial
  f  
prime number
  p  
integer
  m  

See also:  Factor

 


PolyGcd

Returns the gcd of two polynomials.

Syntax:

g := PolyGcd(f, h);

polynomial
  g  
polynomial
  f  
polynomial
  h  

See also:  PolyXGcd

 


PolyHenselLift

Lifts a factorization of a polynomial modulo a prime ideal to a factorization modulo the prime ideal to a given exponent.

Syntax:

PolyHenselLift(f, A, n);

polynomial over an order
  f  
ideal of the same order
  A  
integer
  n  

 


PolyIsIrreducible

missing shortdoc

Syntax:

b := PolyIsIrreducible(f);

boolean
  b  
polynomial
  f  

 


PolyIsSquarefree

missing shortdoc

Syntax:

b := PolyIsSquarefree(f);

boolean
  b  
polynomial
  f  

 


PolyIsZero

Returns true iff the argument is a polynomial and equal to the zero polynomial

Syntax:

b := PolyIsZero(f);

boolean
  b  
  f  

 


PolyMakeMonicInOrder

Make f(x) monic by rational transformation, so that the resulting monic polynomial g(x) is defined over o and creates the same algebra as f(x). g(x) may be the same as f(x).

Syntax:

g:= PolyMakeMonicInOrder(f, o);

order
  o  
polynomial
  f  
polynomial
  g  

 


PolyMakeMonicInZ

Given f(x) in Q[x], the function returns g(x) monic in Z[x], such that g(x) generates the same algebra as f(x).

Syntax:

g:= PolyMakeMonicInZ(f);

polynomial
  f  
polynomial
  g  

 


PolyMove

Tries to compute a representation of a polynomial in a different polynomial algebra.

Syntax:

g := PolyMove (f, S);

polynomial
  g  
polynomial
  f  
ring
  S  

See also:  PolyAlg

 


PolyMoveIntegral

Returns the polynomial moved to integral coefficients.

Syntax:

g := PolyMoveIntegral(f);

polynomial
  f  
polynomial
  g  

See also:  PolyMove

 


PolyNewtonLift

Lifts an algebraic element with the Newton lifting method.

Syntax:

beta := PolyNewtonLift(f, alpha, k);
beta := PolyNewtonLift(f, alpha, k, a);

algebraic element
  alpha  
integer (0 if omitted)
  a  
polynomial
  f  
integer
  k  
polynomial
  beta  

 


PolyNorm

Returns the norm of a polynomial.

Syntax:

n := PolyNorm(f);

norm (polynomial)
  n  
polynomial
  f  

 


PolyPowerMod

missing shortdoc

Syntax:

h := PolyPowerMod(f, n, g);

polynomial
  g  
polynomial
  f  
polynomial
  h  
positive integer
  n  

 


PolyPrimeList

Returns a list containing all monic prime polynomials of degree d in k[x] for a finite field k.

Syntax:

L := PolyPrimeList(kx, d);

list
  L  
polynomial algebra
  kx  
over finite field k
integer
  d  

See also:  PolyPrimeNum, PolyPrimeRandom

 


PolyPrimeNum

Return the number of monic prime polynomials over a finite field.

Syntax:

f := PolyPrimeNum(kx, d);

polynomial
  f  
polynomial algebra over k
  kx  
integer
  d  

 


PolyPrimeRandom

Return a random prime polynomial over a finite field.

Syntax:

f := PolyPrimeRandom(kx, d);

polynomial
  f  
polynomial algebra over k
  kx  
integer
  d  

 


PolyQuotRem

missing shortdoc

Syntax:

L := PolyGcd(f, g);

polynomial
  g  
polynomial
  f  
list
  L  

 


PolyRedDisc

Returns the reduced discriminant of a separable polynomial.

Syntax:

d := PolyRedDisc(f);

integer
  d  
polynomial
  f  

See also:  PolyDisc

 


PolyResultant

Computes the resultant of the two given polynomials.

Syntax:

r := PolyResultant (f, g);

polynomial
  r  
polynomial
  f  
polynomial
  g  

See also:  PolyGcd

 


PolyRoundFour

Returns the factorization of the given polynomial over the p-adic integers and certificates for the irreducibility of the factors.

Syntax:

L := PolyRoundFour(f);
L := PolyRoundFour(f, p);
L := PolyRoundFour(f, p, m);

list
  L  
polynomial
  f  
prime number
  p  
integer
  m  

See also:  Factor, PolyFactor, OrderMaximal

 


PolySig

Computes the signature of a monic squarefree polynomial.

Syntax:

s := PolySig(f);

polynomial
  f  
list
  s  

 


PolySwapVars

Changes the variables of the given bivariate polynomial.

Syntax:

g := PolySwapVars (f);

polynomial
  g  
polynomial
  f  

 


PolyToList

Returns the coefficients of a polynomial in a list.

Syntax:

L := PolyToList(f);

list
  L  
polynomial
  f  

See also:  Poly

 


PolyXGcd

Returns the extended gcd of two polynomials.

Syntax:

l := PolyXGcd(f, h);

list of polynomials
  l  
polynomial
  f  
polynomial
  h  

See also:  PolyGcd

 


PolyZeros

Computes roots of a polynomial.

Syntax:

L := PolyZeros (f [[, "complex"|"int"] [, p [, m ]]]);

list
  L  
polynomial
  f  

 


Prec

Sets and gets the precision for real and complex computations in the shell.

Syntax:

Prec(n);
Prec();

integer
  n  

See also:  OrderPrec

 


PvmClear

Remove all broadcast-jobs, all failed-jobs and all slave-jobs.

Syntax:

PvmClear();

 


PvmExit

Stops kash-Pvm.

Syntax:

PvmExit

 


PvmGet

Receives data from PVM.

Syntax:

L := PvmGet();

List
  L  

 


PvmGetAnswer

Waits for a valid answer to arrive from the slave.

Syntax:

L := PvmGetAnswer(true | false);

list
  L  
first entry is in {1, 2, 4}, all others arbitrary

See also:  PvmGet

 


PvmGetB

Waits for any data to arrive.

Syntax:

L := PvmGetB();

list
  L  

See also:  PvmGet

 


PvmGetEval

Syntax:

 not intended to be called by a user

 


PvmInit

Starts kash-Pvm on the master.

Syntax:

PvmInit();

 


PvmKashIsSlave

true iff we are running as slave, false otherwise.

Syntax:

s := PvmKashIsSlave();

boolean
  s  

 


PvmLengthOfQueue

If called with no parameter, this function returns the maximal number of jobs that can be stored in queue. Otherwise the number is set to the parameter.

Syntax:

PvmLengthOfQueue(n1);
n2 := PvmLengthOfQueue();

integer
  n1, n2  

 


PvmMaxRestartSlave

If called with no parameter, this function returns the maximal number of times a slave may be restarted by security system. Otherwise the number is set to the parameter.

Syntax:

PvmMaxRestartSlave(n1);
n2 := PvmMaxRestartSlave();

integer
  n1, n2  

 


PvmMaxRetransmitJob

If called with no parameter, this function returns the maximal number of times a job may be retransmitted by security system. Otherwise the number is set to the parameter.

Syntax:

PvmMaxRetransmitJob(n1);
n2 := PvmMaxRetransmitJob();

integer
  n1, n2  

 


PvmPread

Reads and prints all arrived data in plain style, i.e. as provided by kash.

Syntax:

PvmPread();

See also:  PvmGet

 


PvmRead

Reads (and prints) all data already received from the slave(s).

Syntax:

PvmRead();

See also:  PvmGet

 


PvmSecurity

If called with no parameter, this function returns the current status of the security system (activated or not). Otherwise it is set to the parameter.

Syntax:

PvmSecurity(true|false);
b := PvmSecurity();

boolean
  b  

 


PvmSendAll

Sends data to all slaves.

Syntax:

PvmSendAll(data, data, ...);

 


PvmSendLast

Sends all parameters to the next free slave.

Syntax:

ok := PvmSendLast(data, data, ...);

See also:  PvmSendNext

 


PvmSendNext

Sends all parameters to the next free slave.

Syntax:

PvmSendNext(data, data, ...);

 


PvmSetPrintLevel

Set the pvm_master->print_level to lev. Only for debuging.

Syntax:

PvmSetPrintLevel(lev);

small integer
  lev  

 


PvmShowBroadcastJobs

Returns the formatstrings of the broadcast--job as a list. Intendend maily for debugging.

Syntax:

PvmShowBroadcastJobs();

 


PvmSlaveError

Slave only: Sends all data given as parameter to the master.

Syntax:

KashPvmError(data, data, ...);

See also:  PvmGet

 


PvmSlaveInfo

Returns information of all Slaves in a list of records.

Syntax:

PvmSlaveInfo();

 


PvmSlavePrint

Slave only: Sends all data given as parameter to the master.

Syntax:

PvmSlavePrint(data, data, ...);

See also:  PvmGet

 


PvmSlaveSend

Slave only: Sends all data given as parameter to the master.

Syntax:

PvmSlaveSend(data, data, ...);

See also:  PvmGet

 


PvmStartSlave

Starts the slave(s).

Syntax:

noSlaves := PvmStartSlave(num);
noSlaves := PvmStartSlave(host);

integer
  noSlaves  
the number of started slaves
integer
  num  
the number of slaves to start. Use 0 to start as many as possible.
string
  host  
start one slave at host.
list
  L  
List of hostnames to start one slave at.

 


PvmStopSlave

Kills the slaves. If no argument is given, all slaves will be killed.

Syntax:

noSlaves := PvmStopSlave();
noSlaves := PvmStopSlave(stid);
noSlaves := PvmStopSlave(L);

integer
  noSlaves  
the number of killed slaves
integer
  stid  
slave-tid to kill
list
  L  
List of slave-tids to kill

 


PvmStoreOrders

Toggels/ Queries some internal flags.

Syntax:

PvmStoreOrders

 


PvmUse

Enables or disables the use of KANT-PVM. Initial state is false. If no argument is given, this function gets the status of PvmUse.

Syntax:

PvmUse(true|false);
s := PvmUse();

boolean
  s  

 


PvmUseMastersHost

Enables or disables the use of the master's host for PvmStartSlave. Initial state is false. If no argument is given, it gets the status of PvmUseMastersHost.

Syntax:

PvmUseMastersHost(true|false);
s := PvmUseMastersHost();

boolean
  s  

 


PvmUseMsg

Enables or disables output for debugging.

Syntax:

PvmUseMsg(true|false);
s := PvmUseMsg();

boolean
  s  

 


PvmUseWatch

Enables or disables the PVM-Watch for debugging. If h is given, the PVM-Watch starts on this host. Initial state is false. If no argument is given, it gets the status of PvmUseWatch.

Syntax:

PvmUseWatch(x, h);
s := PvmUseWatch(x);
s := PvmUseWatch();

boolean
  x  
string
  h  
hostname
boolean
  s  

 


Q

Predefined constant: Rational field Q.

Syntax:

Q;

ring
  Q  

See also:  Z, R, C

 


QfName

missing shortdoc

Syntax:

s := QfName(S);

string
  s  
polynomial algebra or quotient field
  S  

 


QfRank

missing shortdoc

Syntax:

n := QfRank(S);

integer
  n  
polynomial algebra or quotient field
  S  

 


QfScalarRing

missing shortdoc

Syntax:

A := QfScalarRing(S);

ring
  A  
polynomial algebra or quotient field
  S  

See also:  PolyAlgCoef

 


QfeDen

This function returns the denominator of a rational function (quotient field element). Works also for polynomials.

Syntax:

d := QfeDen(f);

quotient field elements
  d,f  

See also:  QfeNum, Num, Den

 


QfeDeriv

Computes the derivation of an rational function.

Syntax:

dhdT := QfeDeriv(h);

qf elements
  dhdT, h  

See also:  AlffDiff, PolyDeriv

 


QfeNum

This function returns the numerator of a rational function (quotient field element). Works also for polynomials.

Syntax:

d := QfeNum(f);

quotient field elements
  d,f  

See also:  QfeDen, Num, Den

 


QfePthRoot

Returns the p-th root of a rational function with scalars in a finite field of characteristic p, if existent.

Syntax:

r := QfePthRoot(a);

qf element or bool
  r  
r p-th root of a or false
qf element
  a  

See also:  AlffEltPthRoot

 


QfeQf

Returns the quotient field in which a rational function (quotient field element) is defined.

Syntax:

F := QfeQf(a);

quotient field
  F  
quotient field element
  a  

See also:  QuotientField

 


QfeVal

Computing valuations in a rational function field.

Syntax:

v := QfeVal(p, a);

integer
  v  
qf elements
  p, a  

See also:  InftyVal, PolyFactor

 


Qp

Creates the p-adic field Q_p

Syntax:

F := Qp(p[,n]);

p-adic field
  F  
prime number
  p  
integer
  n  

See also:  IsQp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpSqrt, QpValuation

 


QpElt

Returns an element of Q_p.

Syntax:

k := QpElt(F, n);

p-adic field
  F  
integer or rational
  n  
p-adic element
  k  

See also:  IsQp, Qp, QpEltToQ, QpEltQp, QpExp, QpLog, QpPrec, QpPrime, QpSqrt, QpValuation

 


QpEltQp

This function creates the p-adic field of the element k.

Syntax:

F := QpEltQp(k);

p-adic field element
  k  
p-adic field
  F  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpPrec, QpExp, QpLog, QpPrime, QpSqrt, QpValuation

 


QpEltToQ

Computes the rational number q of an element in Q_p.

Syntax:

q := QpEltToQ(k);

p-adic field
  F  
p-adic element
  k  
rational number
  q  

See also:  IsQp, Qp, QpElt, QpEltQp, QpExp, QpLog, QpPrec, QpPrime, QpSqrt, QpValuation

 


QpExp

Computes the exponent function of an element in Q_p.

Syntax:

exp:= QpExp(k);

p-adic element
  k  
p-adic element
  exp  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpLog, QpPrec, QpPrime, QpSqrt, QpValuation

 


QpLog

Computes the logarithm of an element in Q_p.

Syntax:

l := QpLog(k);

p-adic element
  k  
p-adic element
  l  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpPrime, QpSqrt, QpValuation

 


QpPrec

Prints or sets the precision of a p-adic field.

Syntax:

k:= QpPrec(F [,n]);

p-adic field
  F  
integer
  n  
integer
  k  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpExp, QpLog, QpPrime, QpSqrt, QpValuation

 


QpPrime

This function creates the prime number which defines the p-adic field.

Syntax:

p := QpPrime(F);

p-adic field
  F  
prime number
  p  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpSqrt, QpValuation

 


QpSqrt

Computes the square root of an element in Q_p.

Syntax:

s := QpSqrt(k);

p-adic element
  k  
p-adic element
  s  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpValuation

 


QpValuation

Computes the valuation of an element in Q_p.

Syntax:

v := QpValuation(F, k);

p-adic field
  F  
p-adic element
  k  
integer
  v  

See also:  IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpExp, QpLog, QpPrec, QpPrime, QpSqrt

 


QuotientField

missing shortdoc

Syntax:

QF := QuotientField(S);

quotient field
  QF  
ring
  S  

See also:  PolyAlg

 


R

Predefined constant: Real field R.

Syntax:

R;

ring
  R  

See also:  Z, Q, C, Prec

 


RandomEcc

Returns a random elliptic curve in Weierstrass form.

Syntax:

E := RandomEcc(F);

elliptic curve
  E  
finite field
  F  

 


RandomElt

Computes a "random" element of a given order.

Syntax:

alpha := RandomElt(R [, l | b, deg | degl]);

element
  alpha  
of o
ring
  R  
may be an order, an ideal, Z, a module, a polynomial algebra or an function field order.
list
  l  
of integers
integer
  b  
equivalent to l := [-b..b]
integer
  deg  
degree of a random element of the
  polynomial algebra R  
list
  degl  
of positive integers

 


RandomIdeal

A random ideal over a given order is computed.

Syntax:

id := RandomIdeal(o);

order
  o  
ideal
  id  

 


RandomMatrix

Using RandomMatrix a square matrix with "random" entries is returned.

Syntax:

m := RandomMatrix(R, n, l);

matrix
  m  
in R^{ n \times n}
ring
  R  
may be an order, an ideal, Z, a module or an function field order.
integer
  n  
list
  l  
of possible (coeffiecents of the) entries.

 


RandomOrder

Using RandomOrder a random order is computed.

Syntax:

o := RandomOrder(R, n [, l]);

order
  o  
ring
  R  
may be Z, an order or an functions field order.
integer
  n  
degree
list
  l  

 


RandomPoly

Produces a monic random polynomial of given degree.

Syntax:

f := RandomPoly(R, d [, l]);

polynomial
  f  
in R[x]
ring
  R  
may be an order, an ideal, Z, a module or an function field order.
integer
  d  
degree of f
list
  l  
of possible (coeffiecents of the) coefficients.

 


RationalReconstruct

Lifts an integer modulo m to a rational.

Syntax:

q := RationalReconstruct (u,m);

rational
  q  
integer
  u  
integer
  m  

See also:  EltReconstruct

 


RayCantoneseRemainder

missing shortdoc

Syntax:

elt := RayCantoneseRemainder(m0,minf,elt0,sig);

ideal
  m0  
list of integers/infinite primes
  minf  
algebraic number
  elt0  
list
  sig  
algebraic number
  elt  

See also:  EltApproximation, EltCon, IdealChineseRemainder, OrderSig, RayResidueRing

 


RayClassField

Given a congruence module, this function computes generating polynomials for the class fields belonging to the cyclic factors of the corresponding ray class group.

Syntax:

c := RayClassField( o | a [, [inf | inf, deg | mat] | deg | mat ] );

list
  c  
containg polynomials of o[x]
order
  o  
for Hilbert class field computations
ideal
  a  
used as (part of) an congruence module as for RayClassGroup
list
  inf  
of infinite places as for RayClassGroup
integer
  deg  
if your interesed only in the deg part of the class field
matrix
  mat  
rows of mat define a factorgroup of the RayClassGroup

See also:  RayClassGroup, RayDiscSig, ImQuadRayField, RayConductor, RayConductorTest

 


RayClassFieldAbelianTest

Tests if a class field is also abelian over Q.

Syntax:

a:=RayClassFieldIsAbelian(G [,m]);

AbelianGroup
  G  
defining a class group
boolean
  a  
integer
  m  

 


RayClassFieldArtin

Given an ideal, this function computes the corresponding automorphism.

Syntax:

aut := RayClassFieldArtin(id, O);

an automorphism
  aut  
ideal
  id  
coprime to the defining module
order
  O  
output of RayClassFieldAuto

See also:  RayClassFieldAuto, RayClassField

 


RayClassFieldAuto

Given the output of RayClassField, this function computes a primitive element for the Ray Class Field togther with the automorphisms.

Syntax:

L := RayClassFieldAuto(c);

list
  L  
containing O and a list of automorphisms
list
  c  
output of RayClassField

See also:  RayClassField

 


RayClassFieldIsAbelian

Tests if a class field is also abelian over Q.

Syntax:

a:=RayClassFieldIsAbelian(G [,m]);

AbelianGroup
  G  
defining a class group
boolean
  a  
integer
  m  

 


RayClassFieldIsCentral

Tests whether the Ray Class Field defined by the given data will be a central extension.

Syntax:

flag := RayClassFieldIsCentral(G [, l]);

boolean
  flag  
AbelianGroup
  G  
a quotient from RayClassGroupToAbelianGroup
list
  l  
of automorphisms, if not present all known automorphisms are used.

 


RayClassFieldIsNormal

Tests whether the Ray Class Field defined by the given data will be a normal extension.

Syntax:

flag := RayClassFieldIsNormal(G [, l]);

boolean
  flag  
AbelianGroup
  G  
a quotient from RayClassGroupToAbelianGroup
list
  l  
of automorphisms, if not present all known automorphisms are used.

 


RayClassFieldSplittingField

Computes data to get the splitting field of the Ray Class Field.

Syntax:

sg := RayClassFieldSplittingField(G, l);

AbelianGroup
  sg  
AbelianGroup
  G  
quotient of RayClassGroupToAbelianGroup
list
  l  
of automorphisms. Must be complete, not just generators.

 


RayClassGroup

Returns the ray class number and the orders of the generators of the ray class group modulo a congruence module.

Syntax:

L := RayClassGroup(m0 [,minf]);
L := RayClassGroup(o [,minf]);

list
  L  
ideal
  m0  
list
  minf  
of integers/infinite primes
order
  o  

See also:  EltCon, IdealRayClassRep, OrderClassGroup, OrderPrec, RayClassGroupCyclicFactors, RayConductor

 


RayClassGroupCyclicFactors

Returns the generators and the orders of the generators of the ray class group modulo a congruence module as computed using RayClassGroup.

Syntax:

L := RayClassGroupCyclicFactors(m0 [,minf]);

list
  L  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  EltCon, IdealRayClassRep, OrderClassGroup, RayClassGroup

 


RayClassGroupToAbelianGroup

Returns the ray class group for a congruence module.

Syntax:

g := RayClassGroupToAbelianGroup(m0 [, minf] [, rels | expo]);

group
  g  
ideal
  m0  
list of integers
  minf  
infinite primes
matrix of integers
  rels  
gives additional relations for a quotient
integer
  expo  
equivalent to rels = expo*MatId.

See also:  RayClassGroup

 


RayConductor

Calculates the conductor of the ray class group modulo a congruence module.

Syntax:

L := RayConductor(m0 [, minf] [, rels]);

list
  L  
ideal
  m0  
list
  minf  
of integers/infinite primes
matrix
  rels  
relation matrix over Z

See also:  EltCon, EltRayResidueRingRep, RayResidueRing, RayClassGroup

 


RayConductorTest

Tests iff the given module is the true conductor.

Syntax:

b := RayConductorTest(m0 [, minf] [, rels]);

boolean
  b  
ideal
  m0  
list
  minf  
of integers/infinite primes
matrix
  rels  
relation matrix over Z

See also:  EltCon, EltRayResidueRingRep, RayResidueRing, RayClassGroup

 


RayDiscSig

Returns the relative discriminant and the absolute signature of the ray class field belonging to a congruence module.

Syntax:

L := RayDiscSig(m0 [,minf] [,rels]);

ideal
  m0  
list
  minf  
of integer/infinite primes
matrix
  rels  
relation matrix over Z
list
  L  

See also:  EltCon, OrderDisc, RayConductor, RayClassGroup, RayClassField

 


RayResidueRing

This function computes the multiplicative group of the residue class ring.

Syntax:

L := RayResidueRing(m0 [,minf]);

list
  L  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  EltCon, EltRayResidueRingRep, RayResidueRingRepToElt, RayResidueRingCyclicFactors

 


RayResidueRingCyclicFactors

Returns generators (and their orders) for the multiplicative group of the residue class ring of an ideal or a congruence module, as computed by RayResidueRing.

Syntax:

L := RayResidueRingCyclicFactors(m0 [,minf]);

list
  L  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  EltCon, IdealRayClassRep, OrderClassGroup, RayClassGroup

 


RayResidueRingRepToElt

Returns a canonical representative of an element of the multiplicative group of the residue class ring of a congruence module.

Syntax:

b := RayResidueRingRepToElt( r, m0, minf);

algebraic element
  b  
matrix
  r  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  RayResidueRing, RayResidueRingCyclicFactors, EltRayResidueRingRep

 


RayResidueRingToAbelianGroup

Returns the ray residue ring modulo a congruence module.

Syntax:

g := RayResidueRingToAbelianGroup(m0 [, minf]);

group
  g  
ideal
  m0  
list of integers
  minf  
infinite primes

See also:  RayResidueRing

 


Re

Returns the real part of a complex number.

Syntax:

a := Re(z);

real
  a  
complex
  z  

See also:  Im

 


Read

Read a file containing KASHcommands.

Syntax:

Read(name);

string
  name  

 


ReadLib

The same as Read, but here the file should be in the KASHlib directory and it must have the extension ".g".

Syntax:

ReadLib(name);

string
  name  

See also:  Read

 


Round

Returns the integer closest to a given number. Note that if the decimal part of the number given is .5, then the number is rounded up. If the number is negative, it is rounded down.

Syntax:

y := Round(x);

integer
  y  
real
  x  

See also:  Trunc, Floor, Ceil

 


SPrint

Creates a string instead of printing on the screen.

Syntax:

s := SPrint( obj1, obj2, ... );

string
  s  
string or kash object
  obj1, obj2  

See also:  Print, SScan

 


SScan

Reads kash objects out of a string.

Syntax:

L := SScan( s, fmt, R1, R2, ...);

list
  L  
containing the kash objects
string
  s  
string
  fmt  
format string
rings
  R1, R2  

See also:  SPrint, SScan

 


SimplexElt

Returns the current point.

Syntax:

L := SimplexElt(s);

list of coordinates of one integral point
  L  
simplex
  s  

See also:  SimplexNext, SimplexInit, SimplexReInit

 


SimplexInit

Initializes the enumeration of all integral points contained in a bounded simplex.

Syntax:

s := SimplexInit(A, b [ , delta ]);

Simplex
  s  
real matrix
  A  
A \in R^{m \times n}
real matrix
  b  
b \in R^{m}
real
  delta  
should be 1+\epsilon

See also:  SimplexNext, SimplexElt, SimplexReInit

 


SimplexNext

Tries to find a "next" integral point in the given simplex.

Syntax:

ok := SimplexNext(s);

boolean
  ok  
simplex
  s  

See also:  SimplexInit, SimplexElt, SimplexReInit

 


SimplexReInit

Reinitializes a given simplex. May be used to set delta.

Syntax:

SimplexReInit(s [, delta ]);

simplex
  s  
real
  delta  

See also:  SimplexNext, SimplexElt, SimplexInit

 


Sin

Returns the sine of a number.

Syntax:

y := Sin(x);

complex
  y  
complex
  x  

See also:  Cos, Tan

 


Sleep

Lets kash sleep for nSec seconds. Useful for KashPvm

Syntax:

Sleep(nSec);

small integer
  nSec  

 


Solve

Solves an equation or computes the roots of a polynomial.

Syntax:

L := Solve(t, A);
L := Solve(o, a);
L := Solve(f);

list
  L  
Thue object
  t  
int
  A  
order
  o  
int | algebraic element
  a  
polynomial
  f  

See also:  OrderNormEquation, ThueSolve, PolyZeros

 


Sqrt

Returns a square root of a number.

Syntax:

y := Sqrt(x);

complex or real
  y  
complex or real or rational or integer
  x  

 


SubfieldAdd

Adds a subfield to the given order.

Syntax:

SubfieldAdd(o, sub, alpha);

order
  o  
order
  sub  
subfield
algebraic element
  alpha  
primitive element of sub in o

See also:  OrderSubfield, OrderSubfieldSub, SubfieldGet

 


SubfieldGet

Returns all computed subfields.

Syntax:

L:=SubfieldGet(o);

list of subfields
  L  
order
  o  

See also:  OrderSubfield, OrderSubfieldSub, SubfieldAdd

 


SubfieldSetDegreeMax

Sets the maximal number of subfield of degree d.

Syntax:

SubfieldSetDegreeMax(O, d)

order
  O  
integer
  d  

 


Tan

Returns the tangent of a number.

Syntax:

y := Tan(x);

complex
  y  
complex
  x  

See also:  Sin, Cos

 


Thue

Creates a thue object for solving Thue equations.

Syntax:

t := Thue(o);
t := Thue(L);
t := Thue(f);

Thue object
  t  
order
  o  
list
  L  
polynomial
  f  

See also:  ThueEval, ThueSolve

 


ThueEval

missing shortdoc

Syntax:

a := ThueEval(t,x,y);

int
  a  
Thue object
  t  
int
  x  
int
  y  

See also:  Thue, ThueSolve

 


ThueSolve

Solves a Thue equation.

Syntax:

L := ThueSolve(t,a [,"exact"|"abs"]);

list
  L  
Thue object
  t  
int
  a  

See also:  Solve, Thue, ThueEval

 


Time

Toggles the time display.

Syntax:

b := Time([true|false]);

boolean
  b  
current status of time display

 


Trace

Computes the trace of an algebraic number or alff element or a matrix

Syntax:

n := Trace(a);
n := Trace(b, o);

algebraic element | alff elt | matrix | ff element
  a  
algebraic element | ff element
  b  
order
  o  

 


TrialDivision

Syntax:

F := TrialDivision(d, b);

list
  F  
integer
  d  
integer
  b  

 


Trunc

Returns the integer part of a number.

Syntax:

y := Trunc(x);

integer
  y  
real
  x  

See also:  Round, Floor, Ceil

 


Valuation

missing shortdoc

Syntax:

d := Valuation( [P,] a);
SHOTDOC Computes the valuation of the argument at a prime (if possible).

integer
  d  
ideal | integer | alff order ideal
  P  
must be prime.
ideal | algebraic element | integer
  a  
to valuate.
alff order ideal
  a  
to valuate.

 


Vec

Returns a vector ( matrix with one column).

Syntax:

v := Vec(r,L);

ring
  r  
list
  L  
matrix
  M  

 


VecDotProduct

Computes the dot product of two vectors.

Syntax:

r := VecDotProduct (u,v);

list
  r  
matrix
  u  
matrix
  v  

 


WeierstrassP

Calculates the value of the Weierstrass \wp-function related to the given lattice.

Syntax:

u := WeierstrassP(z, w1, w2);

complex
  u  
complex
  z  
a non-zero element of the complex torus C/Zw_1oplusZw_2
complex
  w1,w2  
complex values with Im(w_1/w_2)>0

 


World

Returns some information on objects.

Syntax:

World (arg1, arg2, ...);

object 1
  arg1  
\vdots
  \vdots  
object n
  argn  

 


Z

Predefined constant: Integer ring Z.

Syntax:

Z;

ring
  Z  

See also:  Q, R, C

 


ZIdealCreate

Returns the ideal in Z generated by the given integer.

Syntax:

I := IdealRayClassRep(a);

ideal in Z
  I  
integer
  a  

See also:  Ideal

 


Zx

Predefined constant: polynomial algebra over integer ring.

Syntax:

Zx;

See also:  PolyAlg, PolyAlgCoef

 


e

Predefined constant: Euler's constant in the current precision of the real field.

Syntax:

e;

real
  e  

See also:  pi, Prec, R

 


undefined_function_name

missing shortdoc

Syntax:



 


undefined_function_name

missing shortdoc

Syntax:



 


pi

Predefined constant: \pi in the current precision of the real field.

Syntax:

pi;

real
  pi  

See also:  e, Prec, R



The KANT Group <kant@math.tu-berlin.de>
Last modified: 2003-06-01 16:00