d := AbelianDualGroup(g);
groups | g, d |
dualhom := AbelianDualHom(hom);
homomorphism | hom |
homomorphism from g1 to g2 |
See also: AbelianGroupHomCreate, AbelianHomGroup
rc := AbelianFieldToRCF(o [, I]);
list | rc |
[ ideal, inf, relations ] |
order | o |
of an abelian field with known automorphisms |
ideal | I |
of the coef. ring of o. Must be a multiple of the conductor. |
f := AbelianFixPointGroup(hom); f := AbelianFixPointGroup(L);
group | f |
|
homomorphism | hom |
|
list | L |
list of homomorphisms |
L := AbelianGroupBasis(g [, exp]);
group | g |
|
list | L |
list of basis elements of g |
boolean | exp |
See also: AbelianGroupMinNumberGenerators
q := AbelianGroupCanonicalQuotient(hom);
group | q |
|
homomorphism | hom |
See also: AbelianGroupHomImage, AbelianGroupHomKernel, AbelianQuotientGroup
g := AbelianGroupCreate(mat); g := AbelianGroupCreate(mat, "*"); g := AbelianGroupCreate(mat, "+");
group | g |
|
matrix or list of lists | mat |
See also: AbelianSubGroup, AbelianGroupSmithCreate
L := AbelianGroupCyclicFactors(g);
group | g |
|
list | L |
list of cyclic factors of g |
See also: AbelianGroupSmithCreate
d := AbelianGroupDirectProduct(g1, g2); d := AbelianGroupDirectProduct(L);
groups | g1, g2, d |
|
list | L |
list of groups |
b := AbelianGroupDiscreteExp(a);
group | g |
|
group element | a |
representation of b in the abstract group g |
object or boolean | b |
See also: AbelianGroupDiscreteLog
a := AbelianGroupDiscreteLog(g, b);
group | g |
|
group element | a |
representation of b in the abstract group g |
object | b |
See also: AbelianGroupDiscreteExp
elt := AbelianGroupEltCreate(g, vector);
group element | elt |
|
group | g |
|
list or matrix with one row of integers | vector |
See also: AbelianGroupEltReduce
elt2 := AbelianGroupEltMove(elt1, g);
group | g |
|
group element | elt1 |
|
group element | elt2 |
element of the group g |
a := AbelianGroupEltOrder(elt);
group element | elt |
|
integer | a |
See also: AbelianGroupOrder, AbelianGroupEltCreate
e := AbelianGroupEltRandom(G);
AbelianGroupElt | e |
|
AbelianGroup | G |
elt2 := AbelianGroupEltReduce(elt1 [, positive]);
group element | elt1 |
|
group element | elt2 |
reduced representation |
boolean | positive |
s := AbelianGroupEnumInit(G [, "gen"]);
record | s |
|
AbelianGroup | G |
|
arbitray | gen |
if present, only a set of generators will be enumerated. |
See also: AbelianGroupEnumNext
flag := AbelianGroupEnumNext(s);
boolean | flag |
true iff there is a valid element in s |
record | s |
generated by AbelianGroupEnumInit |
AbelianGroupElt | s.elt |
See also: AbelianGroupEnumInit
test := AbelianGroupEqual(g1, g2);
groups | g1, g2 |
|
boolean | test |
a := AbelianGroupExponent(g);
group | g |
|
integer | a |
See also: AbelianGroupOrder, AbelianGroupEltOrder
L := AbelianGroupGenerators(g [, exp]);
group | g |
|
list | L |
list of generators of g |
boolean | exp |
See also: AbelianGroupNumberGenerators, AbelianGroupBasis
hom := AbelianGroupHomCreate(g1, g2, mat [, check]); hom := AbelianGroupHomCreate(g1, g2, mat, [matinv]);
groups | g1, g2 |
|
homomorphism | hom |
homomorphism from g1 to g2 |
boolean | check |
|
matrix | matinv |
See also: AbelianHomGroup
g := AbelianGroupHomImage(hom [, generators]);
group | g |
|
homomorphism | hom |
|
boolean | generators |
See also: AbelianGroupKernel, AbelianQuotientGroup, AbelianGroupCanonicalQuotient
g := AbelianGroupHomKernel(hom [,generators]);
group | g |
|
homomorphism | hom |
|
boolean | generators |
See also: AbelianGroupHomImage, AbelianQuotientGroup, AbelianGroupCanonicalQuotient
a := AbelianGroupIndex(g, s);
group | g |
|
group | s |
subgroup of g |
integer | a |
See also: AbelianSubGroup, AbelianGroupOrder
g := AbelianGroupIntersect(g1, g2);
groups | g, g1, g2 |
See also: AbelianGroupUnite
L := AbelianGroupIsAut(hom [, check]);
homomorphism | hom |
|
boolean | check |
|
list | L |
test := AbelianGroupIsSub(s, g);
groups | g, s |
|
boolean | test |
See also: AbelianSubGroup
a := AbelianGroupMinNumberGenerators(g);
group | g |
|
integer | a |
See also: AbelianGroupBasis
f := AbelianGroupMultiHomCreate(d, g, t, mat);
group | d, g, t |
|
matrix or list of lists | mat |
See also: AbelianMultiHomGroup
AbelianGroupName(g, s);
group | g |
|
string | s |
name of g |
See also: AbelianGroupPrintLevel
a := AbelianGroupNumberGenerators(g);
group | g |
|
integer | a |
See also: AbelianGroupGenerators
a := AbelianGroupOrder(g);
group | g |
|
integer | a |
See also: AbelianGroupExponent
AbelianGroupPrintLevel := a;
integer | a |
s := AbelianGroupSmithCreate(g [, generators]);
group | g, s |
|
boolean | generators |
t := AbelianGroupTensorProduct(L);
group | t |
|
list | L |
list of groups |
g := AbelianGroupUnite(g1, g2);
groups | g, g1, g2 |
See also: AbelianGroupIntersect
h := AbelianHomGroup(g1, g2);
groups | g1, g2, h |
See also: AbelianGroupHomCreate
L := AbelianMultiHomGroup([g_{1}, … ,g_{n}], h);
groups | g_{1}, … , g_{n}, h |
|
list | L |
See also: AbelianGroupMultiHomCreate
q := AbelianQuotientGroup(g, s);
groups | g, q |
|
group | s |
subgroup of g |
See also: AbelianGroupCanonicalQuotient
aut := AbelianRayClassGroupAutoCreate(G, sigma);
AbelianGroupHom | aut |
|
AbelianGroup | G |
must be RayClassGroupToAbelianGroup |
KASH function | sigma |
acting on ideals |
dualhom := AbelianRayGroupImbed(G,g);
abstract rayclassgroup | G |
|
abstract classgroup | g |
See also: RayClassGroupToAbelianGroup
s := AbelianSubGroup([g,] L [, generators]); s := AbelianSubGroup(g, mat [, generators]);
groups | g, s |
|
list | L |
list of elements of g or list of exponent vectors |
matrix | mat |
|
boolean | generators |
a := Abs(x);
complex | a |
|
complex | x |
F := Alff(f);
algebraic function field | F |
|
polynomial | f |
See also: AlffInit, AlffOrders, AlffGenus, AlffPlaceSplit
W := AlffCanonicalDivisor(F);
alff divisor | W |
|
algebraic function field | F |
See also: AlffDifferentDeg, AlffDifferent, AlffDiffDivisor, AlffDivisorLDim, AlffGenus, AlffInit, AlffOrders
Cl := AlffClassGroup( F [, b ] [, A ] [, "fast" ] );
list | Cl |
of integer and list (class group structure) |
alff | F |
global function field |
integer | b |
bound for degree of places to be used |
alff divisor | A |
for reduction |
See also: AlffClassGroupGenBound, AlffClassNumberApprox, AlffDivisorDegOne, AlffLPoly, Alff, AlffInit, AlffOrders
b := AlffClassGroupGenBound(q, g); b := AlffClassGroupGenBound(F);
integer | b |
generation bound |
integers | q, g |
exact constant field size and genus of F |
alff | F |
global function field |
See also: AlffClassGroupGenBoundStrong, AlffClassGroupProdBound, AlffClassGroup, AlffPlacesNum, AlffInit, AlffOrders, AlffGenus
b := AlffClassGroupGenBoundStrong(F);
integer | b |
generation bound |
alff | F |
global function field |
See also: AlffClassGroupGenBound, AlffClassGroupProdBound, AlffClassGroup, AlffInit, AlffOrders
L := AlffClassGroupGens( F, [ b, ] [ A, ] [ "fast" ] );
list | L |
of generating divisors |
alff | F |
global function field |
integer | b |
bound for degree of places to be used |
alff divisor | A |
for reduction |
See also: AlffClassGroup, AlffClassGroupGenBound, AlffClassGroupGenBoundStrongAlffDivisorDegOne, AlffInit, AlffOrders
s := AlffClassGroupPRank(F);
integer | s |
|
global function field | F |
See also: AlffHasseWittInvariant
hbar := AlffClassNumberApprox(F, b);
real | hbar |
approximated class number |
alff | F |
global function field |
integer | b |
bound |
See also: AlffClassNumberApproxBound, AlffClassGroup, AlffLPoly, AlffInit, AlffOrders
b := AlffClassNumberApproxBound(q, g, a); b := AlffClassNumberApproxBound(F, a);
integer | b |
approximation bound |
integers | q, g |
exact constant field size and genus |
alff | F |
global function field |
real | a |
\in R^{> 1} |
See also: AlffClassNumberApprox, AlffClassGroup, AlffLPoly, AlffInit, AlffOrders
k := AlffConstField(F);
field | k |
|
algebraic function field | F |
See also: AlffDimExactConstField
q := AlffConstFieldSize(F);
integer | q |
size of constant field |
algebraic function field | F |
See also: AlffConstField, AlffIsGlobal, Characteristic
n := AlffDeg(F);
integer | n |
|
algebraic function field | F |
See also: AlffOrderPoly
dh := AlffDiff(h);
alff differential | dh |
|
alff element | h |
See also: AlffDiffDivisor, Alff
F := AlffDiffAlff(hdx);
algebraic function field | F |
|
alff differential | hdx |
See also: AlffDiff
hdx := AlffDiffCartier(gdx, r);
differentials | hdx, gdx |
|
integer | r |
number of iterated applications |
See also: AlffDiff
M := AlffDiffCartierMatrix(F, r);
matrix | M |
|
global function field | F |
|
integer | r |
C is r times applied. |
See also: AlffDiff
D := AlffDiffDivisor(hdT);
alff divisor | D |
|
alff differential | hdT |
See also: AlffDivisor, AlffDiffSpace
B := AlffDiffFirstKind(F);
list | B |
of alff differentials |
algebraic function field | F |
See also: AlffDiffSpace, AlffDiffDivisor
r := AlffDiffResiduum(P, hdT);
field element | r |
the residuum of hdT at P |
alff place | P |
|
alff differential | hdT |
See also: AlffDiffDivisor, AlffDiffValuation, AlffEltResiduum
B := AlffDiffSpace(D);
list | B |
of alff differentials |
alff divisor | D |
See also: AlffDiffFirstKind, AlffDiffDivisor
v := AlffDiffValuation(p, fdx);
integer | v |
|
alff place | p |
|
alff differential | fdx |
See also: AlffDiffDivisor, AlffDiff
D := AlffDifferent(F);
alff divisor | D |
|
algebraic function field | F |
See also: AlffDifferentDeg, AlffCanonicalDivisor, AlffDiffDivisor
d := AlffDifferentDeg(F);
integer | d |
|
algebraic function field | F |
See also: AlffDifferent, AlffCanonicalDivisor, AlffDiffDivisor
b := AlffDifferentiation(p, m, a);
alff element | b |
m-times differentiated element |
integer | m |
|
alff place or element | p |
|
alff element | a |
element to differentiate |
See also: AlffDiff, AlffWronskian, AlffRamDivisor
l := AlffDimExactConstField(F);
integer | l |
|
algebraic function field | F |
See also: AlffConstField
D := AlffDivisor(F); D := AlffDivisor(a); D := AlffDivisor(P); D := AlffDivisor(I, J); D := AlffDivisor(u, v);
alff divisor | D |
|
algebraic function field | F |
|
alff order element | a |
|
alff place | P |
|
alff order ideal | I |
of the finite maximal order |
alff order ideal | J |
of the infinite maximal order |
alff order elements | u,v |
See also: AlffPlaceSplit, AlffIdealFactor, AlffEltMove, Alff
F := AlffDivisorAlff(D);
algebraic function field | F |
|
alff divisor | D |
See also: AlffOrderAlff, AlffPlaceAlff
L := AlffDivisorClassRep(D);
list | L |
exponents |
alff divisor | D |
See also: AlffClassGroupGens, AlffClassGroup, AlffInit, AlffOrders
d := AlffDivisorDeg(D);
integer | d |
|
alff divisor | D |
See also: AlffPlaceDeg, AlffDivisorLDim, AlffGenus
D := AlffDivisorDegOne(F);
alff divisor | D |
of degree one |
global function field | F |
See also: AlffPlaces, AlffPlacesDegOne
D2 := AlffDivisorDen(D);
alff divisor | D2 |
|
alff divisor | D |
See also: AlffDivisorNum
L := AlffDivisorIdeals(D);
list | L |
of finite and infinite ideals |
alff divisor | D |
See also: AlffDivisor
B := AlffDivisorLBasis(D);
list | B |
of basis elements |
alff divisor | D |
See also: AlffDivisorLBasisShort, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff
B := AlffDivisorLBasis(D);
list | B |
of basis elements |
alff divisor | D |
See also: AlffDivisorLBasisShort, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff
B := AlffDivisorLBasisShort(D);
list | B |
of pairs of basis elements b_i and degree bounds d_i |
alff divisor | D |
See also: AlffDivisorLBasis, AlffDivisorLDim, AlffDivisorLIndex, AlffDivisorDeg, AlffGenus, Alff
l := AlffDivisorLDim(D);
integer | l |
|
alff divisor | D |
See also: AlffDivisorLBasis, AlffDivisorLIndex, AlffDivisorDeg, AlffGenus, Alff
i := AlffDivisorLIndex(D);
integer | i |
|
divisor | D |
See also: AlffDivisorLBasis, AlffDivisorLDim, AlffDivisorDeg, AlffGenus, Alff
B := AlffDivisorLargeLBasis(D, "raw");
list | B |
the short basis |
alff divisor | D |
See also: AlffDivisorLargeLDim, AlffDivisorLBasisShort, AlffDivisorReduction, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff
d := AlffDivisorLargeLDim(D);
integer | d |
the dimension |
alff divisor | D |
See also: AlffDivisorLargeLBasisShort, AlffDivisorLBasisShort, AlffDivisorReduction, AlffDivisorLDim, AlffDivisorDeg, AlffDivisorLIndex, AlffGenus, Alff
N := AlffDivisorNorm(D);
qf element | N |
|
alff divisor | D |
See also: AlffEltGenT, AlffIdealNorm
D1 := AlffDivisorNum(D);
alff divisor | D1 |
|
alff divisor | D |
See also: AlffDivisorDen
L := AlffDivisorPlaces(D);
list | L |
of lists of alff places and integers |
alff divisor | D |
See also: AlffDivisor
L := AlffDivisorReduction(D); L := AlffDivisorReduction(D, A);
list | L |
as above |
alff divisor | D |
to reduce |
alff divisor | D |
See also: AlffDivisorLargeLDim
L := AlffDivisorSupp(D);
list | L |
of places |
alff divisor | D |
See also: AlffDivisorPlaces
N := AlffDivisorsSmoothNum(n, m, P);
integer | N |
number of (n, m)-smooth divisors |
integers | n, m |
|
list | P |
of integers |
See also: AlffInit, AlffOrders, AlffPlacesNum
r := AlffDivisorsSmoothRatio(n, m, P);
real | r |
smoothness ratio |
integers | n, m |
|
list | P |
of integers |
See also: AlffDivisorsSmoothNum, AlffInit, AlffOrders, AlffPlacesNum
F := AlffEllipticFunField(k, L);
algebraic function field | F |
|
field | k |
|
list | L |
a := AlffElt(o, s); a := AlffElt(o, b); a := AlffElt(o, L);
algebraic function field element | a |
|
algebraic function field order | o |
|
finite field element, rational or order element | s |
a constant |
polynomial or quotient field element | b |
a rational function |
list | L |
of above s or b of length n |
See also: Alff, AlffOrderEqFinite, AlffOrderEqInfty, AlffOrderMaxFinite, AlffOrderMaxInfty
F := AlffEltAlff(a);
alff | F |
|
alff element | a |
See also: AlffEltOrder
alpha := AlffEltApprox(S, Lambda, A [,a]);
element | alpha |
of the algebraic function field F |
list | S |
of places of F |
alff divisor | A |
|
list | a |
of elements of F |
q := AlffEltBstar(a);
rational | q |
|
global function field element | a |
p := AlffEltMinPoly(a);
polynomial | p |
|
alff element | a |
See also: AlffEltCharPoly
d := AlffEltDen(a);
quotient field element or polynomial | d |
|
algebraic function field element | a |
See also: AlffEltNum, AlffEltToList, Num, Den
b := AlffEltEval(P, a);
field element | b |
value of a at P |
alff place | P |
|
alff element | a |
See also: AlffResidueField, AlffEltLift, AlffEltValuation
T := AlffEltGenT(F);
algebraic function field | F |
|
alff element | T |
See also: AlffEltGenY, Alff, AlffOrderMaxFinite
Y := AlffEltGenY(F);
algebraic function field | F |
|
alff element | Y |
See also: AlffEltGenT, Alff, AlffOrderMaxFinite
L := AlffEltInftyVals(a);
list | L |
|
global function field element | a |
See also: AlffPlaceSplit, AlffSignature, Alff
b := AlffEltIsInIdeal(a, I);
boolean | b |
|
alff order element | a |
|
alff order ideal | I |
m := AlffEltMin(a);
coefficient ring element | m |
|
alff element | a |
See also: AlffEltRepMat
p := AlffEltMinPoly(a);
polynomial | p |
|
alff element | a |
See also: AlffEltCharPoly
a := AlffEltMove(b, o);
algebraic function field elements | a,b |
|
algebraic function field order | o |
beta:=AlffEltNewtonLift(o, g, alpha, p, k, den);
algebraic function field element | beta |
|
algebraic function field order | o |
|
polynomial | g |
|
algebraic function field element | alpha |
|
polynomial | p |
|
integer | k |
|
polynomial | den |
a := AlffEltNorm(b);
quotient field element or polynomial | a |
|
algebraic function field element | b |
See also: AlffTrace, AlffEltCharPoly, Norm, Trace
b := AlffEltNum(a);
algebraic function field element | a |
|
algebraic function field element | b |
See also: AlffEltDen, AlffEltToList, Num, Den
o := AlffEltOrder(a);
algebraic function field order | o |
|
algebraic function field element | a |
See also: AlffElt, AlffEltMove, AlffOrderAlff
b := AlffEltPthRoot(a, r);
alff element | b |
|
global function field | F |
|
positive integer | r |
See also: AlffDivisor, AlffDivisorLDim
M := AlffEltRepMat(a);
matrix | M |
|
alff element | a |
See also: AlffEltCharPoly
r := AlffEltResiduum(P, t, a);
field element | r |
the residuum of a at P for t |
alff place | P |
|
alff element | t |
a local paramter at P |
alff element | a |
an algebraic function |
See also: AlffPlacePrimeElt, AlffResidueField, AlffEltEval, AlffEltLift, AlffEltValuation, AlffDiffResiduum
b := AlffEltRoot(a,n );
alff element | b |
|
alff element | a |
|
integer | n |
See also: AlffEltPthRoot
L := AlffEltToList(a);
list | L |
|
algebraic function field element | a |
See also: AlffEltNum, AlffEltDen, AlffElt, Num, Den
b := AlffEltToResField(a, P);
field element | b |
value of a at P |
alff element | a |
|
alff place | P |
See also: AlffResFieldEltLift, AlffELtToResField, AlffEltValuation
a := AlffEltTrace(b);
quotient field element or polynomial | a |
|
algebraic function field element | b |
See also: AlffEltNorm
v := AlffEltValuation(P, a);
integer | v |
|
alff place | P |
|
alff order element | a |
See also: AlffPlaceSplit, AlffDivisor
L := AlffGapNumbers( D [, P] ); L := AlffGapNumbers( F [, P] );
list | L |
containing the gap numbers |
alff divisor | D |
|
alff | F |
equivalent to taking D = 0 |
See also: AlffWeierstrassPlaces, AlffWronskian, AlffWronskianOrders, AlffDiff, AlffDifferentiation
g := AlffGenus(F);
algebraic function field | F |
|
integer | g |
the genus |
See also: AlffDimExactConstField, Alff, AlffDivisorLBasis
s := AlffHasseWittInvariant(F);
integer | s |
|
global function field | F |
See also: AlffClassGroupPRank
F := AlffHermitianFunField(p, d);
global function field | F |
|
integer | p, d |
See also: AlffInit
F := AlffHermitianFunField(p, d);
global function field | F |
|
integer | p, d |
See also: AlffInit
AlffIdeal2EltAssure(I);
alff order ideal | I |
See also: AlffIdealBasisUpperHNF
F := AlffIdealAlff(I);
alff | F |
|
alff order ideal | I |
See also: AlffIdealOrder
B := AlffIdealBasis(I);
list | B |
of basis elements |
alff order ideal | I |
See also: AlffOrderBasis, AlffIdealBasisUpperHNF
L := AlffIdealBasisUpperHNF(I);
list | L |
|
alff order ideal | I |
See also: AlffIdealBasis, AlffIdeal2EltAssure
L := AlffIdealClassGroupUnitsInfty(F);
list | L |
units and ideal class group info |
alff | F |
global function field |
See also: AlffClassGroup, AlffSUnits, AlffInit, AlffOrders
L := AlffIdealFactor(I);
list | L |
|
alff order ideal | I |
in maximal order |
See also: AlffIdealValuation, AlffIdealIsPrime
L := AlffIdealGenerators(I);
ideal | I |
|
list | L |
of two algebraic numbers |
See also: AlffIdealBasis
b := AlffIdealIsPrime(I);
boolean | b |
|
alff order ideal | i |
in maximal order |
See also: AlffIdealFactor, AlffIdealIsPrimeKnown
b := AlffIdealIsPrimeKnown(I);
boolean | b |
|
alff order ideal | I |
in maximal order |
See also: AlffIdealIsPrime, AlffIdealFactor
a := AlffIdealNorm(I);
rational function or polynomial | a |
|
alff order ideal | I |
See also: AlffIdealBasisUpperHNF
o := AlffIdealOrder(a);
alff order | o |
|
alff order ideal | a |
See also: AlffOrderAlff
P := AlffIdealPlace(I);
prime ideal | I |
|
alff place | P |
See also: AlffPlaceIdeal, AlffPlaces
v := AlffIdealValuation(P, I);
integer | v |
|
alff order ideals | P, I |
in maximal order o |
See also: AlffIdealFactor, AlffIdealIsPrime
b := AlffIharaBound(F); b := AlffIharaBound(q, g);
global function field | F |
|
integer | q, g |
|
integer | b |
See also: AlffSerreBound, AlffPlacesDegOneNumBound
AlffInit(k); AlffInit(k, T); AlffInit(k, T, y);
field | k |
|
strings | T, y |
the variable names |
See also: AlffOrders, Alff
AlffInit(k); AlffInit(k, T); AlffInit(k, T, y);
field | k |
|
strings | T, y |
the variable names |
See also: AlffOrders, Alff
b := AlffIsAbs(F);
boolean | b |
|
function field | F |
b := AlffIsGlobal(F);
boolean | b |
whether global or not |
algebraic function field | F |
See also: AlffIsGlobalAssert, AlffConstField, Characteristic
AlffIsGlobalAssert(F);
algebraic function field | F |
See also: AlffIsGlobal, AlffConstField, Characteristic
L := AlffLPoly(F);
polynomial | L |
|
global function field | F |
See also: AlffPlacesDegOneNum, AlffPlacesDegOne
Lr := AlffLPolyLift(L, r);
polynomial | Lr, L |
|
integer | r |
See also: AlffLPoly, AlffPlacesDegOne
L := AlffLPolyRed(F); L := AlffLPolyRed(F, "nocheck");
polynomial | L |
|
F global function field | F |
See also: AlffLPolyRed
E := AlffLinearSeriesEnumElt(env);
alff divisor | E |
current divisor |
record | env |
of enumeration data |
See also: AlffLinearSeriesEnumNext, AlffLinearSeriesEnumEnv
env := AlffLinearSeriesEnumEnv(D, B);
record | env |
of enumeration data |
alff divisor | D |
|
list | B |
of v_1, \dots, v_l |
See also: AlffLinearSeriesEnumNext, AlffLinearSeriesEnumElt
b := AlffLinearSeriesEnumNext(env);
bool | b |
whether there is a next divisor |
record | env |
of enumeration data |
See also: AlffLinearSeriesEnumEnv, AlffLinearSeriesEnumElt
F := AlffOrderAlff(o);
algebraic function field | F |
|
algebraic function field order | o |
See also: AlffOrderPoly, Alff
L := AlffOrderBasis(o);
list of algebraic elements | L |
|
alff order | o |
See also: AlffOrder
B := AlffOrderBasis(o);
list | B |
of basis elements |
alff order | o |
See also: AlffIdealBasis
L := AlffOrderBasisValues(o);
list | L |
|
global function field order | o |
See also: Alff, AlffOrderL0, AlffOrderReduce
b := AlffOrderDedekindTest(o); b := AlffOrderDedekindTest(o, g);
boolean | b |
|
algebraic function field order | o |
|
polynomial | g |
d := AlffOrderDeg(o);
integer | d |
degree |
alff order | o |
See also: AlffDeg
d := AlffOrderDisc(o);
polynomial or quotient field element | d |
|
algebraic function field order | o |
See also: Alff, AlffOrderMaxFinite, AlffOrderMaxInfty
o := AlffOrderEqFinite(F);
algebraic function field order | o |
|
algebraic function field | F |
See also: AlffOrderEqInfty, Alff, AlffElt
o := AlffOrderEqInfty(F);
algebraic function field order | o |
|
algebraic function field | F |
See also: AlffOrderEqFinite, Alff, AlffElt
d := AlffOrderIndex(o);
element | d |
of the coefficient ring |
algebraic function field order | o |
See also: AlffOrderMaxFinite, AlffOrderMaxInfty
b := AlffOrderIsFinite(o);
boolean | b |
|
alff order | P |
L := AlffOrderL0(o);
list | L |
|
global function field order | o |
See also: AlffOrderBasisValues, AlffOrderReduce
o := AlffOrderMaxFinite(F);
algebraic function field order | o |
|
algebraic function field | F |
See also: AlffOrderMaxInfty, AlffOrderMaximal, Alff, AlffElt
o := AlffOrderMaxInfty(F);
algebraic function field order | o |
|
algebraic function field | F |
See also: AlffOrderMaxFinite, AlffOrderMaximal, Alff, AlffElt
O := AlffOrderMaximal(o);
algebraic function field order | O |
|
algebraic function field order | o |
See also: AlffOrderMaxFinite, AlffOrderMaxInfty
f := AlffOrderPoly(o);
polynomial | f |
|
algebraic function field order | o |
See also: AlffOrderDeg, Alff
o2 := AlffOrderReduce(o1);
global function field order | o2 |
|
global function field order | o1 |
See also: AlffOrderL0, AlffOrderBasisValues
L := AlffOrderTransformationMatrix(O);
list | L |
|
alfforder | O |
AlffOrders(f);
polynomial in k[T][y] | f |
AlffOrders(f);
polynomial in k[T][y] | f |
F := AlffPlaceAlff(P);
algebraic function field | F |
|
alff place | P |
See also: AlffOrderAlff
b := AlffPlaceBeta(P);
alff element | b |
|
alff place | P |
See also: AlffEltValuation, AlffPlacePrimeElt, AlffPlaceMin
d := AlffPlaceDeg(P);
integer | d |
|
alff place | P |
See also: AlffPlaceSplit, AlffPlaceRam, AlffPlaceResDeg
I := AlffPlaceIdeal(P);
alff order ideal | I |
|
alff place | P |
See also: AlffPlaceOrder, AlffPlaceSplit, AlffIdealFactor
b := AlffPlaceIsFinite(P);
boolean | b |
|
alff place | P |
See also: AlffPlaceSplit
p := AlffPlaceMin(P);
prime polynomial or 1/T | p |
|
alff place | P |
See also: AlffPlaceSplit
o := AlffPlaceOrder(P);
alff order | o |
|
alff place | P |
See also: AlffPlaceIdeal, AlffPlaceIsFinite, Alff
u := AlffPlacePrimeElt(P);
alff element | u |
|
alff place | P |
See also: AlffEltValuation, AlffPlaceBeta
r := AlffPlaceRam(P);
integer | r |
|
alff place | P |
See also: AlffPlaceSplit, AlffPlaceDeg, AlffPlaceResDeg
p := AlffPlaceRandom(F,d);
alff place | p |
of degree d |
global function field | F |
|
integer | d |
See also: AlffPlaces, AlffPlacesDegOne
f := AlffPlaceResDeg(P);
integer | f |
|
alff place | P |
See also: AlffPlaceSplit, AlffPlaceRam, AlffPlaceDeg
K := AlffPlaceResField(P);
field | K |
residue field of P |
alff place | P |
See also: AlffResFieldEltLift, AlffELtToResField, AlffEltValuation
L := AlffPlaceSplit(F, p);
list | L |
of places {frak P} above {frak p} |
algebraic function field | F |
|
prime polynomial or 1/T | p |
See also: AlffPlaceRam, AlffPlaceDeg, AlffPlaceResDeg, AlffEltValuation
L := AlffPlaceSplitType(F, p);
list | L |
|
algebraic function field | F |
|
polynomial or 1/T | p |
See also: AlffPlaceSplit, AlffPlaceRam, AlffPlaceResDeg, AlffSignature, AlffIdealFactor
L := AlffPlaceSplitType(F, p);
list | L |
|
algebraic function field | F |
|
polynomial or 1/T | p |
See also: AlffPlaceSplit, AlffPlaceRam, AlffPlaceResDeg, AlffSignature, AlffIdealFactor
L := AlffPlaces(F,d);
list | L |
of alff places |
global function field | F |
|
integer | d |
See also: AlffPlacesNum, AlffPlacesDegOne, AlffPlacesDegOneNum
L := AlffPlacesDegOne(F);
global function field | F |
|
list | L |
of alff places |
See also: AlffPlacesDegMNum
L := AlffPlacesDegOne(F);
global function field | F |
|
list | L |
of alff places of degree 1 |
See also: AlffPlacesDegOneNum, AlffPlaces, AlffPlacesNum, AlffPlaceRandom
b := AlffPlacesDegOneNonSingFiniteNum(F, m);
global function field | F |
|
integers | b,m |
See also: AlffPlacesDegOneNumBound
N := AlffPlacesDegOneNum(F,m);
global function field | F |
|
integer | N, m |
See also: AlffPlacesDegOneNumBound, AlffPlacesDegOne
N := AlffPlacesDegOneNum(F,m);
global function field | F |
|
integer | N, m |
See also: AlffPlacesDegOneNumBound, AlffPlacesDegOne, AlffPlaces, AlffPlacesNum
b := AlffPlacesDegOneNumBound(F); b := AlffPlacesDegOneNumBound(q, g);
global function field | F |
|
integer | q, g |
|
integer | b |
See also: AlffSerreBound, AlffIharaBound
S := AlffPlacesNonSpecial(F); S := AlffPlacesNonSpecial(F, d);
list | S |
of alff places |
global function field | F |
|
integer | d |
>= 1 |
See also: AlffPlaces, AlffDivisorLDim
N := AlffPlacesNum(F, m);
global function field | F |
|
integers | N, m |
See also: AlffPlacesDegMNum, AlffPlacesDegOne
N := AlffPlacesNum(F, m);
global function field | F |
|
integers | N, m |
See also: AlffPlacesDegOneNum, AlffPlaces, AlffPlacesDegOne
f := AlffPoly(F);
polynomial | f |
|
algebraic function field | F |
See also: Alff
b := AlffPolyIrrIsSep(f);
polynomial in T and y over field | f |
|
boolean | b |
See also: AlffPolyIsIrreducible, AlffPolyIsIrrSep, Alff
b := AlffPolyIsIrrSep(f);
polynomial in T and y over field | f |
|
boolean | b |
See also: AlffPolyIsIrreducible, Alff
b := AlffPolyIsIrreducible(f);
polynomial in T and y over field | f |
|
boolean | b |
See also: AlffPolyIsIrrSep, Alff
k := AlffPuiseuxCoeff(F);
finite field | k |
|
global function field | F |
See also: AlffRoots
A := AlffRamDivisor(D); A := AlffRamDivisor(F);
alff divisor | A |
the ramification divisor of D |
alff divisor | D |
|
alff | F |
equivalent to taking D = 0 |
See also: AlffWronskian, AlffWronskianOrders, AlffWeierstrassPlaces, AlffGapNumbers, AlffDiff, AlffDifferentiation
R := AlffRegulator(o);
integer | R |
|
finite maximal order | o |
See also: AlffSignature, AlffUnitRank, AlffUnitsFund
a := AlffResFieldEltLift(b, P);
alff element | a |
in o_P |
field element | b |
value of a at P to be lifted |
alff place | P |
See also: AlffResFieldEltLift, AlffELtToResField, AlffEltValuation
L := AlffRootParams(F); L := AlffRootParams(F, n, m);
list | L |
|
global function field | F |
|
integer | n |
|
integer | m |
See also: AlffRoots
L := AlffRoots(F);
list | L |
|
global function field | F |
See also: AlffRootParams, InftyVal
L := AlffSUnits( S [, "raw" ] );
list | L |
the S-regulator and a basis of S-units |
list | S |
a list of places |
See also: AlffClassGroupGens, AlffClassGroup, AlffInit, AlffOrdersAlffDivisorReduction, AlffDivisorLargeLDim, AlffPlacesDegOne
b := AlffSerreBound(F); b := AlffSerreBound(q, g);
global function field | F |
|
integer | q, g |
|
integer | b |
See also: AlffIharaBound, AlffPlacesDegOneNumBound
L := AlffSignature(F);
list | L |
|
global function field | F |
See also: AlffPlaceSplit, AlffUnitRank
b := AlffTameInftyPlace(F);
boolean | b |
|
algebraic function field | F |
See also: AlffPlaceSplit
r := AlffUnitRank(F);
integer | r |
|
global function field | F |
See also: AlffSignature
L := AlffUnitsFund(o);
list | L |
|
finite maximal order | o |
of a global function field |
See also: AlffRegulator
T := AlffVarT(F);
algebraic function field | F |
|
polynomial | T |
See also: AlffEltGenT, Alff
y := AlffVarY(F);
algebraic function field | F |
|
polynomial | y |
See also: AlffEltGenY, Alff
L := AlffWeierstrassPlaces( D ); L := AlffWeierstrassPlaces( F );
list | L |
containing the Weierstra\ss{} places |
alff divisor | D |
|
alff | F |
equivalent to taking D = 0 |
See also: AlffGapNumbers, AlffRamDivisor, AlffWronskian, AlffWronskianOrders, AlffDiff, AlffDifferentiation
W := AlffWronskian(D); W := AlffWronskian(F);
list | W |
list of rows |
alff divisor | D |
{cal L}(D) is computed |
alff | F |
equivalent to taking D = 0 |
See also: AlffWronskianOrders, AlffDiff, AlffDifferentiation, AlffRamDivisor
W := AlffWronskianOrders(D); W := AlffWronskianOrders(F);
list | W |
list of rows |
alff divisor | D |
{cal L}(D) is computed |
alff | F |
equivalent to taking D = 0 |
See also: AlffWronskian, AlffDiff, AlffDifferentiation, AlffRamDivisor
y := ArcCos(x);
complex | y |
|
complex | x |
y := ArcSin(x);
complex | y |
|
complex | x |
y := ArcTan(x);
complex | y |
|
complex | x |
phi := Arg(z);
real | phi |
|
complex | z |
BagRead(file); BagRead("filename");
File | file |
See also: BagWrite
BagWrite (file, arg [,arg]); BagWrite("filename", arg [,arg]);
File | file |
|
any expression | arg |
See also: BagRead
Bell();
bern := Bernoulli(n);
integer | n |
|
list | bern |
See also: BernoulliMagma
bern := BernoulliMagma(n);
integer | n |
|
list | bern |
See also: Bernoulli
C;
ring | C |
y := Ceil(x);
integer | y |
|
real | x |
p := CharPoly (a [,PA]); p := CharPoly (a [,O]); p := CharPoly( M );
polynomial | p |
|
polynomial algebra | PA |
|
suborder | O |
|
algebraic element alff order element | a |
|
matrix | M |
See also: EltCharPolyAlffEltCharPolyMatCharPoly
i := CharToInt(c);
character | c |
|
integer | i |
See also: IntToChar
m := Characteristic(R);
integer | m |
|
ring | R |
r = CheckArgus (hdCall,string);
r | int |
number of type matching format string |
hdCall | TypHandle |
all arguments |
string of format strings | t_string |
elt := ChineseRemainder(M,L); elt := ChineseRemiander(LM); elt := ChineseRemainder(m1, m2, a1, a2);
integer, polynommial, or order element | elt |
|
list of elements (integers, polynomials, or order elements) | L |
|
list of modules (integers, polynomials, or ideals) | M |
|
list of pairs of elements and modules | LM |
|
modules (integers, polynomials, or ideals) | m1,m2 |
|
elements (integers, polynomials, or order elements) | a1,a2 |
See also: IdealChineseRemainder
closed := Close(f);
File | f |
|
boolean | closed |
See also: BagRead, BagWrite, ECHOon, ECHOoff, FLDin, FLDout, LOFILES, Open
a := Coeff(poly, i [,"x"]);
ring element | a |
|
polynomial | poly |
|
positive integer | i |
See also: Coef
s := ColorString(l);
string | s |
|
list of strings | l |
Colors(flag); Colors(s1, ..., sn); Colors(L);
boolean | flag |
switch color mode on or off |
string | s1, ..., sn |
resource strings |
list | L |
list of lists of resource strings |
z := Comp(a, b);
complex | z |
|
real | a |
|
real | b |
c := ComplexGamma(z);
complex | z |
|
complex | c |
w := Conj(z);
complex | w |
|
complex | z |
y := Cos(x);
complex | y |
|
complex | x |
t := Date( );
record | t |
DbQuery(query [, num])
string | query |
|
integer | num |
u := DedekindEta(z);
complex | u |
|
complex | z |
complex number with Im(z)>0 |
d := Den( a ); d := Den(a, "rep"); d := Den( q ); I := Den( I );
integer | d |
|
quotient field element or polynomial | d |
|
rational | q |
|
algebraic element | a |
|
algebraic function field order element | a |
|
quotient field element or polynomial | q |
|
ideal | I |
d := Disc(f); d := Disc(o); d := Disc(l);
ring element | d |
|
polynomial | f |
|
order alff order | o |
|
lattice | l |
ECHOoff();
See also: ECHOon
ECHOon ( name \| file [, arg] );
string | name |
filename to write to |
file | file |
open for writing |
expression | arg |
should produce an output to stdout |
See also: ECHOoff
P := EccDecrypt(K,E,a,M);
finite field | K |
|
list | E |
|
integer | a |
|
list | M |
|
list | P |
See also: EccPointsAdd, EccIntPointMult, EccPointIsOnCurve, EccEncrypt, FF
M := EccEncrypt(K,E,B,aB,k,P);
finite field | K |
|
list | E |
|
list | B |
|
list | aB |
|
integer | k |
|
list | P |
|
list | M |
See also: EccPointsAdd, EccIntPointMult, EccPointIsOnCurve, EccDecrypt, FF
ec := EccInit(p,a,b); ec := EccInit(p,li); ec := EccInit(fli);
elliptic curve | ec |
|
integer | a |
|
integer | b |
|
integer | p |
|
list of integers | li |
|
list of finite field elements | fli |
nP := EccIntPointMult(K,E,n,P);
finite field | K |
|
list | E |
|
integer | n |
|
list | P |
|
list | nP |
See also: EccPointsAdd, EccPointIsOnCurve, EccEncryptEccDecrypt, FF
NP:=EccNumberOfPoints(p | F,a,b); NP:=EccNumberOfPoints(ec);
int or finite field element | a |
|
int or finite field element | b |
|
int | p |
|
finite field | F |
|
list | ec |
b := EccPointIsOnCurve(K,ec,point);
finite field | K |
|
list | ec |
|
list | point |
|
boolean | b |
See also: EccPointsAdd, EccIntPointMult, EccEncryptEccDecrypt, FF
sum := EccPointsAdd(K,ec,P1,P2);
finite field | K |
|
list | E |
|
list | P1 |
|
list | P2 |
|
list | sum |
See also: EccIntPointMult, EccPointIsOnCurve, EccEncryptEccDecrypt, FF
P := EccRandomPoint(F,E);
point on the elliptic curve E | P |
|
finite field | F |
|
elliptic curve | E |
a := Ei(b);
real | a |
|
real | b |
c := EisensteinSeries(tau,s,a1,a2,q,N);
complex | tau |
|
real | s |
|
integer | a1 |
|
integer | a2 |
|
integer | q |
|
positive integer | N |
a := Elt(O,L); a := Elt(O,L/d); a := Elt(O,h/d); a := Elt(O,h);
algebraic element | a |
|
order | O |
|
list | L |
of coefficients |
integer | h |
|
integer | d |
v := EltAbs (a);
real matrix | v |
|
algebraic element | a |
h := EltAbsLogHeight(a);
real | h |
|
algebraic element | a |
E := EltApproximation(P, L);
list | P |
of distinct prime ideals over the same order |
list | L |
of small integers |
algebraic element | E |
See also: IdealChineseRemainder, RayCantoneseRemainder
L := EltAutomorphism (a); c := EltAutomorphism (a,i);
list | L |
|
algebraic element | c |
|
algebraic element | a |
|
integer | i |
See also: OrderAutomorphisms
p := EltCharPoly (a [, PA]); p := EltCharPoly (a [, O]);
polynomial | p |
|
polynomial algebra | PA |
|
suborder | O |
|
algebraic element | a |
v := EltCon(alpha); c := EltCon(alpha,i);
complex matrix | v |
|
complex number | c |
|
algebraic element | alpha |
|
integer | i |
d := EltDen(a); d := EltDen(a, "rep");
integer | d |
|
algebraic element | a |
L := EltDivisors (a);
list | L |
|
algebraic integer | a |
L := EltExcepUnitOrbit(epsilon);
list | L |
|
algebraic element | epsilon |
See also: OrderUnitsExcep
L := EltFactor(a);
list | L |
|
algebraic element | a |
See also: Factor
b := EltIdealReduce(a,I); same as b := EltIdealReduce(a,I,HNF); b := EltIdealReduce(a,I,LLL); b := EltIdealReduce(a,I,INTEGRAL); b := EltIdealReduce(a,I,HNF_POS); b := EltIdealReduce(a,I,INTEGRAL_POS);
algebraic element | b |
|
algebraic element | a |
|
Ideal | I |
|
interpreted as strings | HNF, LLL, INTEGRAL, HNF_POS, INTEGRAL_POS |
index := EltIndex (alpha [,Z]);
integer | index |
|
algebraic integer | alpha |
|
ring of integers | Z |
See also: OrderIndexFormEquation
b := EltIsInIdeal (alpha,a);
boolean | b |
|
algebraic element | alpha |
|
ideal | a |
|
INDES test on; element of an ideal |
||
check for; element of an ideal |
||
algebraic number; element of an ideal test |
||
element of an ideal test |
b := EltIsInt(a);
boolean | b |
|
algebraic element | a |
b := EltIsIntegral(a); b := EltIsIntegral(a, "order");
boolean | b |
|
algebraic element | a |
b := EltIsPrimitive (a);
boolean | b |
|
algebraic element | a |
See also: EltMinPoly
d := EltListAbsDisc (L);
list | L |
of algebraic elements |
integer | d |
M := EltListToMat(L);
matrix | M |
matrix over the coefficient order of the elements of L |
list | L |
of algebraic numbers |
See also: EltMatToList
v := EltLogs(a);
real matrix | v |
|
algebraic element | a |
L := EltMatToList(O, M);
list | L |
of algebraic numbers over O |
matrix | M |
of algebraic numbers |
order | O |
relative order over the coefficient order of the elements of the matrix |
See also: EltListToMat
p := EltMinPoly (a [, PA]); p := EltMinPoly (a [, O]);
polynomial | p |
|
polynomial algebra | PA |
|
suborder | O |
|
algebraic element | a |
v := EltMinkowski(a);
real matrix | v |
|
algebraic element | a |
b := EltMove(a,S);
algebraic element or lattice element | b |
|
algebraic element or lattice element | a |
|
order or lattice | S |
alpha := EltNewtonLift(o, a, f, p, k);
algebraic element | alpha |
|
order | o |
|
algebraic element | a |
|
polynomial | f |
|
integer | p |
|
integer | k |
n := EltNorm(a [,o]);
rational number or algebraic element | n |
|
algebraic element | a |
|
order | o |
See also: EltTrace
b := EltNumberReduce(a,m);
integer or rational number | m |
|
algebraic element | a |
|
algebraic element | b |
o := EltOrder(alpha);
order | o |
|
algebraic element or integer | alpha |
e := EltPowerMod(a, pow, M);
algebaric element | e, a |
|
integer | {pow} |
|
integer | M |
beta := EltPowerProduct(o,Alpha,Expons);
algebraic element | beta |
|
order | o |
|
matrix of algebraic elements | Alpha |
|
matrix of integers | Expons |
r := EltRayResidueRingRep(elt,m0,minf);
matrix | r |
|
algebraic element | elt |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, RayResidueRing, RayResidueRingRepToElt, RayResidueRingCyclicFactors
alpha := EltReconstruct (gamma, m);
false or algebraic element | alpha |
|
algebraic element | gamma |
|
integer | m |
See also: RationalReconstruct
L := EltRepMat(a[,o]);
list | L |
|
algebraic element | a |
|
order | o |
must be a direct suborder of EltOrder (a) |
beta := EltRoot(alpha,m); beta := EltRoot(alpha,m [,"enum"|"mode"]); beta := EltRoot(alpha,m ,"enum", mode);
false or algebraic element | beta |
|
algebraic element | alpha |
|
small integer | m |
|
small integer or string | mode |
|
string | enum |
e := EltSimplify(a);
integer or algebaric element | e |
|
integer or algebraic element | a |
f := EltToFFE( a, p);
integer or algebraic element | a |
|
prime ideal | p |
|
finite field element or integer | f |
interpreted as finite field element |
See also: IdealResidueField, IdealResidueFieldIsomorphism, FFEToElt
L := EltToList(a);
algebraic element | a |
|
list | L |
of integers or algebraic elements |
t := EltTrace (a [,o]);
rational number or algebraic element | t |
|
algebraic element | a |
|
order | o |
See also: EltNorm
F := EltUnitDecompose(u); L := EltUnitDecompose(u,"expons");
list | F |
|
list | L |
|
algebraic element | u |
val := EltValuation(P, alpha);
val}{integer}{returned value. |
||
P}{ideal}{a prime ideal. |
||
alpha}{algebraic element or integer}{number to evaluate. |
See also: IdealValuation, IntValuation
y := EulerGamma();
real | y |
y := Eval(f, s);
y |
||
polynomial | f |
|
s |
y := Exp(x);
complex | y |
|
complex | x |
See also: Log
F := FF(p); F := FF(p, d); F := FF(f);
finite field | F |
|
integer | p |
|
integer | d |
|
polynomial | f |
See also: FFElt, FFGenerator, FFPrimitiveElt
FFCreate(O,p,k)
order | O |
|
integer | p |
|
integer | k |
See also: kantff
a := FFEToElt( f, p);
finite field element | f |
|
ideal | p |
must be prime |
algebraic number or integer | a |
interpreted as algebraic number |
See also: IdealResidueField, IdealResidueFieldIsomorphism, EltToFFE
a := FFElt(F, n);
finite field element | a |
|
finite field | F |
|
integer | n |
See also: FFPrimitiveElt, FFGenerator, FFEltToList
F := FFEltFF(a);
finite field element | a |
|
finite field | F |
b := FFEltIsZero(a);
boolean | b |
|
a |
d := FFEltLog(a);
finite field element | a |
|
integer | d |
See also: FFPrimitiveElt
p := FFEltMinPoly(a); p := FFEltMinPoly(a, J); p := FFEltMinPoly(a, Jx);
polynomial | p |
|
finite field element | a |
|
finite field | J |
subfield of the finite field of a |
polynomial algebra in x over J | Jx |
See also: FFPrimitiveElt
b := FFEltMove(a, J);
finite field element | b |
|
finite field element | a |
|
finite field | J |
See also: FFPrimitiveElt
p := FFEltNorm(a); p := FFEltNorm(a, J);
polynomial | p |
|
finite field element | a |
|
finite field | J |
subfield of the finite field of a |
See also: FFPrimitiveElt
b := FFEltRoot(a, n);
finite field element | b |
|
finite field element | a |
|
small integer | n |
i := FFEltToInt(b);
finite field element | b |
|
integer | i |
L := FFEltToList(b); L := FFEltToList(b, k);
finite field element | b |
|
subfield | k |
|
list | L |
See also: FFGenerator
p := FFEltTrace(a); p := FFEltTrace(a, J);
polynomial | p |
|
finite field element | a |
|
finite field | J |
subfield of the finite field of a |
See also: FFPrimitiveElt
FFEmbed(F1, F2); FFEmbed(F1, F2, b);
finite field | F1 |
|
finite field | F2 |
|
finite field element | b |
See also: FF
a := FFGenerator(F); a := FFGenerator(F, k);
finite field element | a |
|
finite field | F |
|
subfield of F | k |
See also: FFPrimitiveElt, FFEltToList
w := FFPrimitiveElt(F);
finite field element | w |
|
finite field | F |
See also: FFElt, FFGenerator
L := FFSize(F);
list | L |
of p and d with p^d = q. |
finite field | F |
o := FLDin(name [, n]); o := FLDin(); o := FLDin(f [, n]);
file | f |
open for reading |
string | name |
filename |
order | o |
|
integer | b |
the number of fields to skip. If given, the number |
of fields is returned. |
o := FLDin(name [, n]); o := FLDin(); o := FLDin(f [, n]);
file | f |
open for reading |
string | name |
filename |
order | o |
|
integer | b |
the number of fields to skip. If given, the number |
of fields is returned. |
FLDout(o [, name | file]);
Order | o |
|
String | name |
filename to use |
File | file |
opened for writing |
See also: Open, Close, LOFILES, FLDin, ECHOon, ECHOoff
F := Factor(d); F := Factor(f); F := Factor(f, p); F := Factor(a); F := Factor(alpha); F := Factor(O, d); F := Factor(O, a); F := Factor(O, alpha);
list | F |
|
prime | p |
|
integer | d |
|
polynomial | f |
|
ideal | a |
|
algebraic element | alpha |
|
order | O |
See also: IntFactor, EltFactor, PolyFactor, IdealFactor
o := FilePosition(file [, pos ]);
file | f |
open for reading |
sg := FindMaximalCentralField(o | I [, inf][, aut]); sg := FindMaximalCentralField(G [, aut]);
Matrix | sg |
describing the aditional relations |
order | o |
|
integral ideal | I |
|
list | inf |
of infinite places |
AbelianGroup | G |
must be from RayClassGroupToAbelianGroup |
list | aut |
of automorphisms of o, if omitted OrderAutomorphisms(o, []) is used. |
s := FindQuotientOfShapeEnumInit(G, L);
record | s |
|
AbelianGroup | G |
|
list | L |
of integers describing the shape of the subgroup |
See also: FindQuotientOfShapeEnumNext
flag := FindQuotientOfShapeEnumNext(s [, 1]);
boolean | flag |
|
record | s |
generated by FindQuotientOfShapeEnumInit |
if present find subgroups instead of quotients. | 1 |
See also: FindQuotientOfShapeEnumInit
y := Floor(x);
integer | y |
|
real | x |
o := GPin(name); o := GPin(); o := GPin(f);
file | f |
file opened for reading |
string | name |
filename |
order | o |
|
** |
Galois ( f [,p] [, "fast"] ); Galois ( o [,p] [, "fast"] ); Galois ( f , "complex" [, n] ); Galois ( o , "complex" [, n] ); GaloisT ( f [,p] [, "fast"] ); GaloisT ( o [,p] [, "fast"] ); GaloisT ( f , "complex" [, n] ); GaloisT ( o , "complex" [, n] );
polynomial | f |
|
order | o |
|
prime number | p |
|
positive integer | n |
precision |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
GaloisBlocks(o); GaloisBlocks(o, true);
order | o |
See also: GaloisGroupsPossible, GaloisModulo, Galois
GaloisGlobals(o);
order | o |
See also: Galois, GaloisTree, GaloisRoots
b:= GaloisGroupKnown(K);
int or false | b |
|
order or algebraic function field | K |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
GaloisGroupOrder(n, k);
integer | n |
representing degree |
integer | k |
representing group in T-notation |
See also: Galois
GaloisGroupSet(K, G);
order or algebraic function field | K |
|
int | G |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
L := GaloisGroupsPossible(o); GaloisGroupsPossible(o, G, flag); GaloisGroupsPossible(o, L, flag);
order | o |
|
integer | G |
representing transitive group in T-notation |
list | L |
of integers G |
boolean | flag |
whether to add or remove groups |
See also: Galois, GaloisTree, GaloisNumberToName
g:= GaloisMSetPol(f, k);
int | k |
must be positive |
polynomial | f, g |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName
g:= GaloisMSumPol(f, k);
int | k |
must be positive |
polynomial | f,g |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
L := GaloisMissionS(o); L := GaloisMissionS(o, m);
list | L |
list of suborders |
order | O |
the given order |
small integer | m |
the prescribed degree of subfields |
See also: GaloisMissionS
GaloisModulo(o, b);
order | o |
|
integer | b |
bound |
See also: Galois, GaloisBlocks, GaloisGroupsPossible, GaloisTree
GaloisNumberToName(n, k);
integer | n |
representing degree |
integer | k |
representing group in T-notation |
See also: Galois
L := GaloisRing(o);
order | o |
|
list | L |
of either the p-adic order, the prime (ideal) p and theexponent k or the complex field and the precesion |
See also: Galois
L := GaloisRoots(o); L := GaloisRoots(o,k);
order | o |
|
int | k |
|
list | L |
of list of roots and permutation |
See also: Galois
G := GaloisSymb(o); G := GaloisSymb(F); G := GaloisSymb(f);
string | G |
|
order | o |
|
algebraic function field | F |
|
polynomial | f |
See also: Galois
G := GaloisSymb(o|F|f);
string | G |
|
order | o |
|
algebraic function field | F |
|
polynomial | f |
See also: Galois
G := GaloisSymbT(o); G := GaloisSymbT(F); G := GaloisSymbT(f);
int | G |
|
order | o |
|
algebraic function field | F |
|
polynomial | f |
See also: Galois
G := GaloisSymbT(o|F|f);
int | G |
|
order | o |
|
algebraic function field | F |
|
polynomial | f |
See also: Galois
See also: Galois, GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlock
L := GaloisTree(o);
order | o |
|
list | L |
list of two lists of integers |
See also: Galois, GaloisTreeRoots, GaloisGroupsPossible, GaloisNumberToName
L := GaloisTreeRoots(o);
order | o |
|
list | L |
list of two lists of integers |
See also: GaloisTree, Galois, GaloisGroupsPossible, GaloisNumberToName
g:= GaloisTwoSequencePol(f);
polynomial | f, g |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
y := Gamma(x);
real | y |
|
real | x |
gcd := Gcd(L); gcd := Gcd(a, b);
integer or polynomial or ideal | gcd |
|
list of integers of polynomials or ideals | L |
|
integer or polynomial or ideal | a |
|
integer or polynomial or ideal | b |
st := GetEnvironment(name);
string | st |
|
string | name |
y := HermiteUpperBound(n);
real | y |
|
integer | n |
c := HurwitzZeta(s,v,m0);
complex | s |
|
real | v |
|
integer | m0 |
|
complex | c |
I := Ideal(e); I := Ideal(o, n); I := Ideal(e, f); I := Ideal(n, e); I := Ideal(o, M, d); I := Ideal(o, MO);
Ideal | I |
|
algebraic element | e |
|
algebraic element | f |
|
order over Z | o |
|
matrix | M |
of integers |
integer | d |
denominator of M |
integer | n |
|
module | MO |
over the coefficient order of o |
Ideal2EltAssure(I);
ideal | I |
See also: IdealGenerators, IdealBasis
Ideal2EltIntAssure(I);
ideal | I |
See also: Ideal2EltAssure, Ideal2EltNormalAssure
b := Ideal2EltKnown(I);
Boolean | b |
|
ideal | I |
See also: IdealGenerators
Ideal2EltNormalAssure(I);
ideal | I |
See also: IdealGenerators
b := Ideal2EltNormalKnown(I);
Boolean | b |
|
ideal | I |
See also: IdealGenerators
B := IdealAutomorphism (A,i);
ideal | B |
|
ideal | A |
|
integer | i |
See also: EltAutomorphism, OrderAutomorphisms
M := IdealBasis(I);
ideal | I |
|
list | M |
two elements, the denominator and the representation matrix |
See also: IdealGenerators
b := IdealBasisKnown(I);
Boolean | b |
|
ideal | I |
See also: IdealBasis
M:=IdealBasisLowerHNF(I);
list | M |
two elements, the denominator and the basis matrix |
ideal | I |
See also: IdealBasisUpperHNF, IdealLowerHNFTrans
M := IdealBasisUpperHNF(I);
list | M |
two elements, the denominator and the basis matrix |
ideal | I |
See also: IdealBasisLowerHNF, IdealUpperHNFTrans
beta := IdealChineseRemainder(a1, a2, alpha1, alpha2)
ideals | a1, a2 |
|
algebraic numbers | alpha1, alpha2 |
|
algebraic number | beta |
See also: EltApproximation, RayCantoneseRemainder
L := IdealClassRep(I); L := IdealClassRep(I, "gen");
list | L |
|
ideal | I |
See also: OrderClassGroup, IdealIsPrincipal, IdealRayClassRep
M := IdealCollection(I1,I2);
list | M |
two lists of two elements of the order |
ideals | I1,I2 |
integral, over a maximal order |
See also: ModuleSteinitz
d := IdealDegree(I);
integer | d |
|
ideal | I |
must be prime |
See also: IdealRamIndex
d := IdealDen(I);
ideal | I |
|
integer | d |
See also: IdealIsIntegral
L := IdealDivisors (A);
list | L |
|
ideal | A |
F := IdealFactor(a);
list | F |
|
ideal | a |
See also: Factor
g := IdealGen(I, i);
algebraic element | g |
|
ideal | I |
|
small integer | i |
{\in{1,2}} |
See also: IdealGenerators, IdealBasis
L := IdealGenerators(I);
ideal | I |
|
list | L |
of two algebraic numbers |
See also: IdealBasis
E := IdealIdempotents(L)
list | L |
of integral ideals over the same order |
false or list | E |
of algebraic elements over the same order |
I1:= IdealImprove(I2);
ideal | I1, I2 |
See also: IdealMin
errcount = IdealIntegrity(I);
ideal | I |
|
small integer | errcount |
the number of detected errors |
b := IdealIsIntegral(I);
boolean | b |
|
Ideal | I |
See also: IdealDen
b := IdealIsPrime(I);
boolean | b |
|
ideal | I |
integral |
See also: orderidealisprimeideal
g := IdealIsPrincipal(I); g := IdealIsPrincipal(I, classgroup);
ideal | I |
|
false or algebraic number | g |
principal generator |
I := IdealLLL(a);
ideal | I, a |
See also: IdealBasisIdealGenerators
I:=IdealLcm(I1, I2);
Ideals | I, I1, I2 |
M:=IdealLowerHNFTrans(I);
matrix | M |
|
ideal | I |
See also: IdealBasisLowerHNF
c := IdealMakeCoprime(A,B));
ideal | A,B |
|
algebraic number | c |
See also: IdealMakeInvCoprime, IdealClassRep, OrderClassGroup
a := IdealMakeInvCoprime(I1,I2);
ideals | A, B |
must be integral |
algebraic number | a |
See also: IdealMakeCoprime
m:=IdealMin(I);
integer | m |
|
ideal | I |
See also: IdealGen
I2 := IdealMove(I1, o);
same type as I1 | I2 |
|
ideal | list of ideals | I1 |
|
order | o |
See also: EltMove
n := IdealNorm(I);
ideal | I |
|
rational number | n |
O := IdealOrder(I);
Order | O |
|
Ideal | I |
s := IdealPrimeCountInit(o[, m);
record | s |
|
order | o |
|
integer | m |
only primes coprime to m are used. |
See also: IdealPrimeCountNext
p := IdealPrimeCountNext(s [, 1]);
prime ideal | p |
|
record | s |
from IdealPrimeCountInit |
if present, p will be a pair [p, f] with p a prime of the coefficient order and f the degree of p | 1 |
See also: IdealPrimeCountInit
e:=IdealPrimeElt(I);
algebraic number | e |
|
Ideal | I |
r := IdealRadical (A, O);
order | O |
|
ideal | A |
|
ideal | r |
d := IdealRamIndex(I);
ideal | I |
must be prime |
integer | d |
See also: IdealDegree
r := IdealRayClassRep(I,m0,minf);
matrix | r |
|
ideal | I |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, OrderClassGroup, RayClassGroup, RayClassGroupCyclicFactors
L:= IdealRemainderSet(I);
list | L |
|
ideal | I |
See also: IdealNorm
K := IdealResidueField(p);
ideal | p |
|
finite field | K |
See also: IdealResidueFieldIsomorphism, EltToFFE, FFEToElt, RayResidueRing
alpha := IdealResidueFieldIsomorphism(a,b);
algebraic element | alpha |
|
ideal | a |
|
ideal | b |
See also: IdealResidueField
o := IdealRingOfMultiplicators (A);
order | o |
|
ideal | A |
M:=IdealUpperHNFTrans(I);
matrix | M |
|
ideal | I |
See also: IdealBasisUpperHNF
val := IdealValuation(p, I);
ideal | P |
must be prime |
ideal | I |
|
integer | val |
See also: IdealFactor
L := IdealWithNorm(n,o);
List | L |
|
integer | n |
>1 |
MaximalOrder | o |
alpha:=IdemLift(a, p, k);
algebraic element | alpha |
|
algebraic element | a |
|
integer | p |
|
integer | k |
a := Im(z);
real | a |
|
complex | z |
See also: Re
g:=ImQuadFormCreate(D,p); g:=ImQuadFormCreate(D,[a,b,c]);
O := ImQuadHilbert(o [,repr] [,"roots"] );
order | o |
imaginary quadratic field |
list | repr |
representants for the ideal classes of o |
order | O |
Hilbert class field |
See also: OrderHilbert, ImQuadRayField, RayClassField
O := ImQuadRayField( f [,"char" | "field" | "maxord"] );
ideal | f |
integral ideal in imaginary quadratic field |
order | O |
ray class field modulo f |
See also: RayClassField, ImQuadHilbert, OrderHilbert
I := Index (a); I := Index (o);
coefficient ring element | I |
|
algebraic element | a |
|
order alff order | o |
See also: EltIndexOrderIndexAlffOrderIndex
c := InftyGcd(a, b);
quotient field elements | a,b,c |
See also: InftyVal, InftyQuotRem, InftyLcm
c := InftyLcm(a, b);
quotient field elements | a,b,c |
See also: InftyVal, InftyQuotRem, InftyGcd
L := InftyQuotRem(a, b);
list | L |
of q and r |
quotient field elements | a,b |
See also: InftyVal, InftyGcd, InftyLcm
n := InftyVal(a);
integer | n |
|
quotient field element | a |
of FF_q(x) |
See also: InftyQuotRem, InftyGcd, InftyLcm, AlffRoots
Insert(L, a, pos);
list | L |
|
arbitrary object | a |
|
integer | pos |
L := IntDivisors(d);
list | L |
|
integer | d |
See also: IntFactor
a := IntEulerPhi(n);
integer | a |
|
integer | n |
F := IntFactor(d);
list | F |
|
integer | d |
See also: Factor
gcd := IntGcd (a1,a2);
integer | gcd |
|
integer | a1 |
|
integer | a2 |
b := IntIsPrime(n)
boolean | b |
|
integer | n |
See also: NextPrime
b := IntIsSquare(n)
boolean | b |
|
integer | n |
c := IntLcm(a, b);
integer | c |
|
integer | a |
|
integer | b |
a := IntMoebiusMy(n);
integers | a, n |
See also: IntDivisors
a := IntMoebiusMy(n);
integers | a, n |
See also: IntDivisors
y := IntPowerMod(x, n, m);
integer | y |
|
integer | x |
|
integer | n |
|
integer | m |
L := IntPrimeDivisors(d);
list | L |
|
integer | d |
See also: IntFactor
q := IntQuo(a, b);
integer | q |
|
integer | a |
|
integer | b |
y := IntRandomBits(n);
integer | y |
|
small integer | n |
|
H |
m := IntRoot(r, n)
boolean | m |
|
integer | n |
|
integer | r |
c := IntToChar(i);
character | c |
|
integer | i |
See also: CharToInt
v := IntValuation(p, n);
integer | v |
|
integer | p |
|
integer | n |
See also: IdealValuation, EltValuation
G := IntXGcd (a1,a2); G := IntXGcd (L);
list | G |
|
integer | a1 |
|
integer | a2 |
|
list | L |
See also: IntGcd
y := IntZeta(n);
real | y |
|
integer distinct from 1 | n |
L := IntegralPoints(k); L := IntegralPoints(a,b);
list | L |
|
integer | k |
|
integer | a |
|
integer | b |
b := IsAlff(F);
boolean | b |
|
object | F |
See also: Alff
b := IsAlffDiff(a);
boolean | b |
|
alff differential | a |
See also: AlffDiff
b := IsAlffDivisor(D);
boolean | b |
|
arbitrary object | D |
See also: IsAlffPlace, IsBound, Unbind
b := IsAlffElt(T);
boolean | b |
|
function field order element | T |
b := IsAlffPlace(P);
boolean | b |
|
arbitrary object | P |
b := IsChar(c);
character | c |
|
boolean | b |
See also: IsString
b := IsEcc(E);
boolean | b |
|
E |
b := IsElt(x);
boolean | b |
|
x |
b := IsFF(k);
boolean | b |
|
object | k |
See also: FF
b := IsFFElt(a);
boolean | b |
|
a |
b := IsIdeal(x);
boolean | b |
|
x |
b := IsInt(x);
boolean | b |
|
x |
See also: TYPE, IsIdeal, IsPoly, IsOrder, IsElt,
b := IsLat(a);
boolean | b |
|
a |
bool := IsMat(M);
a matrix-like object | M |
|
a boolean if conversion is possible | bool |
b := IsMat(x);
boolean | b |
|
x |
b := IsModule(m);
boolean | b |
|
object | m |
b := IsOrder(x);
boolean | b |
|
x |
b := IsPoly(f);
boolean | b |
|
f |
b := IsPrime(x);
boolean | b |
|
x |
b := IsQf(k);
boolean | b |
|
object | k |
See also: QuotientField, QfeQf
b := IsQp(k);
p-adic element | k |
|
boolean | b |
See also: Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpSqrt, QpValuation
b := IsQpELt(a);
p-adic element | a |
|
boolean | b |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpValuation
flag := IsRecType(a, type);
boolean | flag |
|
anything | a |
|
string | type |
b := IsThue(x);
boolean | b |
|
x |
z := JBessel(nu,x);
integer | nu |
|
real | x |
|
real | z |
y := JacobiSymbol(n, m);
integer | n |
|
integer | m |
x := KASHLEVEL(s); x := KASHLEVEL(s,level);
integer | x |
|
string | s |
|
integer | level |
z := KBessel(s,x);
complex | s |
|
real | x |
|
complex | z |
LOFILES();
Lambda := Lat(M,["basis"|"gram"]); Lambda := Lat(o [,"mink"|"unit"]); Lambda := Lat(a); Lambda := Lat(Delta,L); Lambda := Lat(Delta,M [,"trans"|"basis"|"gram"]); Lambda := Lat(Module);
lattice | Lambda |
|
matrix | M |
|
order | o |
|
ideal | a |
|
list | L |
|
lattice | Delta |
M := LatBasis(Lambda);
matrix | M |
|
lattice | Lambda |
q := LatCholesky(Lambda);
matrix | q |
|
lattice | Lambda |
disc := LatDisc(Lambda);
real | disc |
|
lattice | Lambda |
a := LatElt(Lambda, L); a := LatElt(Lambda, v);
lattice elt | a |
|
lattice | Lambda |
|
list of reals | L |
|
vector over reals | v |
r := LatEltLength(a);
real | r |
|
lattice elt | a |
L := LatEltToList(a);
list | L |
|
lattice element | a |
v := LatEltVec(le);
vector | v |
|
lattice element | le |
ok := LatEnum(Lambda);
boolean | ok |
|
lattice | Lambda |
a := LatEnumElt(Lambda);
lattice elt | a |
|
lattice | Lambda |
lbound := LatEnumLowerBound(Lambda [,lbound]);
real | lbound |
|
lattice | Lambda |
s := LatEnumPrec(Lambda); s := LatEnumPrec(Lambda,"short"); s := LatEnumPrec(Lambda,"long");
list | s |
|
lattice | Lambda |
v := LatEnumRefVec(Lambda [,v]);
vector | v |
|
lattice | Lambda |
LatEnumReset(Lambda);
lattice | Lambda |
See also: LatEnum
ubound := LatEnumUpperBound(Lambda [,ubound]);
real | ubound |
|
lattice | Lambda |
Lambda2 := LatFinckeReduce(Lambda1);
lattice | Lambda2 |
|
lattice | Lambda1 |
M := LatGram(Lambda);
matrix | M |
|
lattice | Lambda |
Lambda2 := LatLLL(Lambda1);
lattice | Lambda2 |
|
lattice | Lambda1 |
L := LatShortestElt(Lambda); L := LatShortestElt(Lambda,m); L := LatShortestElt(Lambda,"all");
list of lattice elements | L |
|
lattice | Lambda |
|
integer | m |
L := LatSuccMins(Lambda);
list | L |
|
lattice | Lambda |
lcm := Lcm(L); lcm := Lcm(a, b);
integer or polynomial or ideal | lcm |
|
list of integers of polynomials or ideals | L |
|
integer or polynomial or ideal | a |
|
integer or polynomial or ideal | b |
a := Li(b);
real | a |
|
real or integer | b |
a := ListApplyListAdd(L, S);
element | a |
|
lists | L, S |
of elements |
See also: ListApplyMatAdd
S := ListApplyMatAdd(L, M);
lists | S, L |
of elements |
matrix | M |
for linear combinations |
See also: ListApplyListAdd
S := ListSplit(L, n);
list | S |
of lists of length <= n |
list | L |
to be split |
integer | n |
block length |
See also: IntDivisors
y := Log(x); y := Log(b,x);
complex or real | y |
|
complex or real or rational or integer | x |
|
complex or real or rational or integer | b |
See also: Exp
M := Mat([S,] L);
matrix | M |
|
ring | S |
|
list | L |
See also: IsMat
f := MatCharPoly(M);
matrix | M |
|
Polynomial | f |
See also: MatMinPoly
S := MatCoef(M);
ring | S |
|
matrix | M |
See also: Mat
n := MatCols(M);
integer | n |
|
matrix | M |
See also: MatRows
d := MatDet(M);d := MatDet(M, bound);
element of the ring the matrix entries come from | d |
|
matrix | M |
M := MatDiag(S, L);
matrix | M |
|
ring | S |
|
list | L |
diagonal entries |
L := MatEchelon(M);
list | L |
|
matrix | M |
a := MatElt(M, row, col); a := M[row][col]; M[row][col] := a; r := M[row]; M[row] := L;
element of the ring the matrix entries come from | a |
|
matrix | M |
|
small integer | row |
|
small integer | col |
|
an object of the type "KANT matrow" | r |
|
either a list, a "KANT matrix", or a "KANT matrow" | L |
H := MatHermiteColLower(M);
matrix | H |
|
matrix | M |
L := MatHermiteColLowerTrans(M);
list | L |
|
matrix | M |
H := MatHermiteColModUpper(k, M);
matrix | H |
|
integer | k |
|
matrix | M |
H := MatHermiteColUpper(M);
matrix | H |
|
matrix | M |
L := MatHermiteColUpperTrans(M [,"int"]);
list | L |
|
matrix | M |
H := MatHermiteRowMod(k, M);
matrix | H |
|
integer | k |
|
matrix | M |
I := MatId(S, n);
matrix | I |
|
ring | S |
|
small integer | n |
n := MatIndex(m);
integer | n |
index |
matrix | m |
over Z |
A := MatInv(M);
matrix | A |
|
matrix | M |
K := MatKernel(M); K := MatKernel(M, d);
matrix | K |
|
matrix | M |
|
integer | d |
L := MatLLL(M [,r]); L := MatLLL(M,"short" | "long" [,r]);
list of A, T | L |
|
matrix | M |
|
LLL constant (default 0.75) | r |
L := MatLLL(M);
list | L |
|
matrix | M |
f := MatMinPoly(M);
matrix | M |
|
Polynomial | f |
See also: EltMinPoly, MatCharPoly
V := MatMove (M, r);
matrix | V |
|
matrix | M |
|
ring | r |
n := MatRows(M);
integer | n |
|
matrix | M |
See also: MatCols
L := MatSmith(M);
list | L |
|
matrix | M |
L := MatSmithTrans(M);
list | L |
|
matrix | M |
L := MatSolve (A, b); L := MatSolve(A, b, N);
list | L |
|
matrix | A |
|
matrix | b |
|
integer | N |
a module |
M := MatSym(S, L);
matrix | M |
|
ring | S |
|
list | L |
L := MatSymDiag (A);
list | L |
|
matrix | A |
L := MatToColList(M);
list | L |
|
matrix | M |
L := MatToRowList(M);
list | L |
|
matrix | M |
t := MatTrace(M);
element of the ring the matrix elements come from | t |
|
matrix | M |
A := MatTrans(M);
matrix | A |
|
matrix | M |
n := Min(a);
int | rational | ideal | n |
|
ideal | a |
p := MinPoly (a [,PA]); p := MinPoly (a [,O]); p := MinPoly( M ); p := MinPoly(a);
polynomial | p |
|
polynomial algebra | PA |
|
suborder | O |
|
algebraic element alff order element | a |
|
matrix | M |
See also: EltMinPolyMatMinPolyAlffEltMinPoly
M1 := Module([IL,] M); M1 := Module(EL);
module | M1 |
|
list | IL |
of ideals over a maximal order O |
matrix | M |
of algebraic elements over O |
list | EL |
of relative algebraic elements of o |
See also: ModuleIdeals, ModuleMatrix, ModuleOrder
den := ModuleDen(M);
integer | den |
|
module | M |
det := ModuleDet(M)
module | M |
|
ideal | det |
See also: ModuleModul
M2 := ModuleDual( M1 );
modules | M1, M2 |
See also: ModuleIntersection
m := ModuleId(o, n);
Module | m |
|
order | o |
|
positive integer | n |
the degree |
L := ModuleIdeals(M);
list | L |
of ideals |
module | M |
See also: Module, ModuleMatrix
M :=ModuleIntersection(M1, M2 [,d | I] [,"PBNF"] [,"lower"] );
modules | M, M1, M2 |
|
integer | d |
used for reduction |
ideal | I |
used for reduction |
See also: ModuleConcat, ModuleNF
M :=ModuleIntersectionVS(M1, mat );
modules | M, M1, M2 |
|
integer | d |
used for reduction |
ideal | I |
used for reduction |
See also: ModuleConcat, ModuleNF
L :=ModuleMap(M1, mat [ , "nf" | "kernel" ] );
modules | M, M1, M2 |
|
integer | d |
used for reduction |
ideal | I |
used for reduction |
See also: ModuleConcat, ModuleNF
m := ModuleMatrix(M);
matrix | m |
|
module | M |
See also: Module
L:=ModuleMember(M,V|EL);
list | L |
see below |
module | M |
|
vector | V |
|
list | EL |
of n algebraic elements of O |
a := ModuleModul(M)
ideal | a |
|
module | M |
See also: ModuleDet, ModuleDen
M2 := ModuleMove(M1, o);
same type as M1 | M2 |
|
module | list of modules | M1 |
|
order | o |
M2 := ModuleNF(M1 [,d|I] [,"PBNF"] [,"lower"] );
modules | M1, M2 |
|
integer | d |
used for reduction |
ideal | I |
used for reduction |
See also: Module
o := ModuleOrder(M);
order | o |
|
module | M |
See also: Module
L :=ModuleSmith(M1, M2, ["U" | "V" | "UV" );
modules | M1, M2 |
|
integer | d |
used for reduction |
ideal | I |
used for reduction |
See also: ModuleConcat, ModuleNF
M2 := ModuleSteinitz(M1);
modules | M1, M2 |
See also: Module
M :=ModuleUnion(M1, M2 [,d|I] [,"PBNF"] [,"lower"] );
modules | M, M1, M2 |
|
integer | d |
used for reduction |
ideal | I |
used for reduction |
See also: ModuleConcat, ModuleNF
a := Move(L, O); N := Move(M, r); a := Move(f, r)
integer or polynomial or ideal | a |
|
list of integers of polynomials or ideals | L |
|
Order | O |
|
matrix | N, M |
|
polynomial | f |
|
ring | r |
See also: EltMove, IdealMove, ModuleMove, MatMove, PolyMove, FFEltMove
b := MultiCounterInc(L, n);
boolean | b |
|
list | L |
|
integer | list | n |
See also: MultiCounterInit
L := MultiCounterInit(n);
list | L |
|
integer | n |
See also: MultiCounterInc
p := NextPrime(n);
integer | p |
|
integer | n |
Nice(v); v := Nice();
small integer | v |
n := Norm(a); n := Norm(b, o);
int | rational | algebraic number | polynomial | n |
|
algebraic element | ideal | polynomial | alff element | ff element | a |
|
algebraic element | ff element | b |
|
order | o |
d := Num( q ); d := Num( a ); d := Num(I);
integer | d |
|
quotient field element or polynomial | d |
|
rational | q |
|
algebraic function field order element | a |
|
algebraic element | a |
|
quotient field element or polynomial | q |
|
ideal | I |
f := Open(name, mode); ok := Open(f);
File | f |
|
string | name |
|
string | mode |
|
boolean | ok |
See also: BagRead, BagWrite, Close, ECHOon, ECHOoff, FLDin, FLDout, LOFILES
o1 := Order (f); o1 := Order (o,d,alpha); o1 := Order (o,T,d); o1 := Order (o,T,L); o1 := Order (o,L);
order | o1 |
|
order | o |
|
polynomial | f |
|
integer | d |
|
matrix | T |
|
algebraic element | alpha |
|
list | L |
Oa := OrderAbs(O); Oa := OrderAbs(O,"no hom");
order | Oa |
|
order | O |
See also: OrderInstallHom
aut := OrderAutomorphisms(o); aut := OrderAutomorphisms(o, L); aut := OrderAutomorphisms(o, "normal"); aut := OrderAutomorphisms(o, "abel");
list | aut |
list of automorphisms |
order | o |
the given order |
list | L |
list of some known automorphisms |
See also: EltAutomorphism, OrderAutomorphismsAbel, OrderAutomorphismsNormal
aut := OrderAutomorphismsAbel(o);
logical | aut |
IsAbelian |
order | o |
the given order |
See also: EltAutomorphism, OrderAutomorphisms, OrderAutomorphismsNormal
aut := OrderAutomorphismsNormal(o);
list | aut |
list of automorphisms |
order | o |
the given order |
See also: EltAutomorphism, OrderAutomorphisms, OrderAutomorphismsAbel
b := OrderBach(O);
integer | b |
|
order | O |
See also: OrderMinkowski
L := OrderBasis(o); L := OrderBasis(o, O);
list of algebraic elements | L |
|
order | o |
|
order | O |
See also: OrderCoefIdeals
B := OrderBasisIsPower(o);
boolean | B |
|
order | o |
See also: OrderBasisIsRel, OrderEquationOrder
b := OrderBasisIsRel(o);
boolean | b |
|
order | o |
See also: OrderBasisIsPower, OrderEquationOrder
L := OrderClassGroup( O [,b] [,"fast"] [,"Euler"] );
list | L |
|
order | O |
|
integer | b |
See also: OrderClassGroupCheck, OrderClassGroupCyclicFactors, IdealClassRep, IdealIsPrincipal
OrderClassGroupCheck(o, [[lb,] ub ] | [p, "pmax"]);
order | o |
|
integer | ub |
upper resp.~ lower bound |
integer | p |
prime number |
See also: OrderClassGroup
L := OrderClassGroupCyclicFactors(O);
list | L |
|
order | O |
See also: OrderClassGroup, OrderClassGroupCyclicFactorsPrincipal
L := OrderClassGroupCyclicFactorsPrincipal(O, ["raw"]);
list | L |
|
order | O |
See also: OrderClassGroup, OrderClassGroupCyclicFactors
r := OrderClassGroupFactorBasisProve(o, lb, ub);
boolean | r |
|
order | o |
|
integer | lb, ub |
lower resp.~upper bound |
See also: OrderClassGroup
L := OrderCoefIdeals(o);
list of ideals | L |
|
relative order | o |
See also: OrderBasis
c := OrderCoefOrder(o);
order, ring of integers | c |
|
order | o |
See also: OrderEquationOrder, OrderSubOrder
o := OrderCyclotomic(n);
order | o |
|
integer | n |
o := OrderCyclotomicRealSubfield(n);
order | o |
|
integer | n |
d := OrderDeg(o);
integer | d |
|
order | o |
See also: OrderDegAbs
d := OrderDegAbs(o);
integer | d |
|
order | o |
See also: OrderDeg
D := OrderDisc(o);
integer or ideal | D |
|
order | o |
over Z or over a maximal order |
oe := OrderEquationOrder(o);
order | oe |
|
order | o |
See also: OrderBasisIsPower, OrderBasisIsRel
L := OrderExcepSequence (o);
list | L |
exceptional sequence |
order | o |
See also: OrderUnitsExcep
OrderFincke(o); OrderFincke(o, x); OrderFincke(o, x, y);
order | o |
|
real | x |
|
real | y |
See also: OrderNormEquation
See also: Galois, GaloisT, GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
I := OrderIndex(o);
integer | I |
|
order | o |
See also: OrderDisc
L := OrderIndexFormEquation(o,index);
list | L |
|
order | o |
|
integer | index |
See also: EltIndex
OrderInstallHom(o1,o2,alpha); OrderInstallHom(o1,o2,b);
order | o1 |
|
order | o2 |
|
algebraic element | alpha |
|
boolean | b |
B := OrderIsMaximal(o);
boolean | B |
|
order | o |
See also: OrderSetMaximal
OrderIsSubfield(o1, o2);
order | o1 |
|
order | o2 |
disc := OrderKextDisc(F);
ideal | disc |
|
order | F |
Gen := OrderKextGenAbs(F);
list | Gen |
of algebraic elements |
order | F |
Gen := OrderKextGenRel(F);
list | Gen |
of algebraic elements |
order | F |
See also: OrderKextGenRel, OrderKextDisc
L := OrderKextModularPower(pI, mu);
list | L |
containing alpha and l |
ideal | pI |
a prime ideal |
algebraic element | mu |
o1 := OrderLLL(O);
order | o1 |
|
order | o |
O := OrderMaximal( def); O := OrderMaximal( def, str);
order | O |
|
see below | def |
|
up to 4 optional strings | str |
See also: OrderPMaximal, Order
L := OrderMerge(o1,o2);
list | L |
return value |
order | o1 |
|
order | o2 |
a := OrderMinIdeal (o);
ideal | a |
|
order | o |
m := OrderMinkowski(O);
integer | m |
|
order | O |
See also: OrderBach
L := OrderNormEquation(o, a [,n | "all" [,"exact" | "abs" | "ineq"]]);
list | L |
|
int | element of the coefficient ring | a |
|
int | n |
See also: Solve
op := OrderPMaximal(o,p, str); op := OrderPMaximal(o,p,b, str);
order | op |
|
order | o |
|
rational prime or prime ideal | p |
|
integer | b |
|
up to 3 optional strings | str |
See also: OrderMaximal, Order
f := OrderPoly(P,o); f := OrderPoly(o);
polynomial | f |
|
polynomial algebra | P |
|
order | algebraic function field order | o |
See also: OrderEquationOrder, AlffOrderDeg, Alff
L := OrderPolyHenselLift(o, d, p, k);
list | L |
|
order | o |
|
integer | d |
|
prime | p |
|
integer | k |
P := OrderPrec(p); P := OrderPrec(); L := OrderPrec(o,p); L := OrderPrec(o,p,u); L := OrderPrec(o);
small integer | P |
|
small integer | p |
|
order | o |
|
small integer | u |
|
list | L |
precisions of both real rings belonging to o |
See also: Prec
OrderPrintFlags(a); a := OrderPrintFlags();
record | a |
x := OrderReg(o); x := OrderReg(o,"classgroup"); x := OrderReg(o, reg);
real | x |
|
order | o |
|
real | reg |
See also: OrderRegLowBound, OrderUnitsFund, OrderUnitsIndep
x := OrderRegLowBound(o); x := OrderRegLowBound(o, reg);
real | x |
|
order | o |
|
real | reg |
See also: OrderReg
elt := OrderRelNormEq(O,n [, "true"]);
order | O |
|
list | elt |
list of elements in O |
element | n |
element in coefficient ring of O |
L := OrderRelUnits(o [,S | I] [,"raw"]);
list | L |
of L1, T, hs or L2, hs |
list | L1 |
of algebraic integers |
list | L2 |
of S-units |
matrix | T |
transformation matrix |
integer | hs |
S-class number |
order | o |
|
list | S |
of pairwise distinct prime ideals. |
ideal | I |
See also: OrderSUnits
Or := OrderRelativeOrder(O, o);
order | Or |
|
order | O |
|
order | o |
See also: OrderAbs
L := OrderSUnits(o [,S | I] [,"raw"]);
list | L |
of L1, T, hs or L2, hs |
list | L1 |
of algebraic integers |
list | L2 |
of S-units |
matrix | T |
transformation matrix |
integer | hs |
S-class number |
order | o |
|
list | S |
of pairwise distinct prime ideals. |
ideal | I |
See also: OrderClassGroup, OrderClassGroupCheck, OrderSUnitsPositive
P := OrderSUnitsPositive(L);
list | P |
|
list | L |
See also: OrderSUnits, OrderUnitsFund, EltMinkowski
OrderSetMaximal(o); OrderSetMaximal(o,flag);
order | o |
|
optional boolean | flag |
See also: OrderIsMaximal
OrderSetTorsionUnit(o,alpha,r);
order | o |
|
algebraic element | alpha |
|
integer | r |
rank |
See also: OrderTorsionUnit, OrderTorsionUnitRank
o1 := OrderShort(o); o1 := OrderShort(o, modus); o1 := OrderShort(o, modus, iterations);
order | o1 |
|
order | o |
|
integer | modus |
|
integer | iterations |
See also: Order
Oa := OrderShortAbs(O);
order | Oa |
|
order | O |
See also: OrderShort, OrderAbs
L := OrderSig(o);
list | L |
|
order | o |
See also: PolySig
o1 := OrderSimplify(o);
order | o1 |
|
order | o |
See also: OrderTransformationMatrix, Order
O := OrderSplittingField (o);
order | O |
|
order | o |
os := OrderSubOrder(o);
order or boolean | os |
|
order | o |
See also: OrderEquationOrder, OrderCoefOrder
L := OrderSubfield(o); L := OrderSubfield(o, m);
list | L |
list of suborders |
order | O |
the given order |
small integer | m |
the prescribed degree of subfields |
See also: OrderSubfieldSub
L := OrderSubfieldSub(o, p); L := OrderSubfieldSub(o, p, d); L := OrderSubfieldSub(o, p, d, L1);
list | L |
|
order | o |
|
integer | p |
|
integer | d |
|
list | L1 |
See also: OrderSubfield
u := OrderTorsionUnit(o);
algebraic element | u |
|
order | o |
See also: OrderSetTorsionUnit, OrderTorsionUnitRank
r := OrderTorsionUnitRank(o);
integer | r |
number of roots of unity |
order | o |
See also: OrderTorsionUnit, OrderSetTorsionUnit
M := OrderTraceMat(o);
Matrix | M |
|
order | o |
L := OrderTransformationMatrix(O);
list | L |
|
order | O |
See also: OrderBasis, OrderCoefIdeals, Order
b := OrderUnitsAreFund(o); b := OrderUnitsAreFund(o,c);
boolean | b, c |
|
order | o |
See also: OrderUnitsFund
L := OrderUnitsEquation (alpha,beta,gamma); L := OrderUnitsEquation (alpha,beta);
list | L |
|
algebraic elements | alpha, beta, gamma |
See also: OrderUnitsExcep
L := OrderUnitsExcep(o); L := OrderUnitsExcep(o,"orbits"|"list"); n := OrderUnitsExcep(o,"number");
list | L |
|
integer | n |
|
order | o |
See also: EltExcepUnitOrbit, OrderExcepSequence, OrderUnitsEquation
L := OrderUnitsFund(o);
list | L |
|
order | o |
See also: OrderSUnits, OrderSUnitsPositive
L := OrderUnitsIndep(o); L := OrderUnitsIndep(o,"classgroup"); L := OrderUnitsIndep(o,"classgroup","list");
list | L |
|
order | o |
See also: OrderUnitsFund, OrderClassGroup
OrderUnitsLLL (O);
order | O |
See also: OrderLLL, OrderUnitsPFund
B := OrderUnitsMerge(o,eta); B := OrderUnitsMerge(o,eta,"append");
boolean | B |
|
order | o |
|
algebraic element | eta |
a unit in o |
OrderUnitsPFund (O,p);
order | O |
|
rational prime | p |
See also: OrderUnitsFund
x := PRINTLEVEL(s); x := PRINTLEVEL(s,level); x := PRINTLEVEL("all",level);
small integer | x |
|
string | s |
|
small integer | level |
f := Poly(A, L);
polynomial | f |
|
polynomial algebra | A |
|
list | L |
See also: PolyAlg
Sx := PolyAlg(S [, name]);
polynomial algebra | Sx |
|
ring or polynomial | S |
|
string | name |
See also: Poly, PolyAlgCoef, Zx
S := PolyAlgCoef(Sx);
ring | S |
|
polynomial algebra | Sx |
See also: PolyAlg
n := PolyDeg(f);
integer | n |
|
polynomial | f |
h := PolyDeriv(f);
polynomial | h |
|
polynomial | f |
d := PolyDisc(f);
discriminant (integer or finite field element) | d |
|
polynomial | f |
See also: PolyRedDisc
F := PolyFactor(f); F := PolyFactor(f, p); F := PolyFactor(f, p, m);
list | F |
|
polynomial | f |
|
prime number | p |
|
integer | m |
See also: Factor
g := PolyGcd(f, h);
polynomial | g |
|
polynomial | f |
|
polynomial | h |
See also: PolyXGcd
PolyHenselLift(f, A, n);
polynomial over an order | f |
|
ideal of the same order | A |
|
integer | n |
b := PolyIsIrreducible(f);
boolean | b |
|
polynomial | f |
b := PolyIsSquarefree(f);
boolean | b |
|
polynomial | f |
b := PolyIsZero(f);
boolean | b |
|
f |
g:= PolyMakeMonicInOrder(f, o);
order | o |
|
polynomial | f |
|
polynomial | g |
g:= PolyMakeMonicInZ(f);
polynomial | f |
|
polynomial | g |
g := PolyMove (f, S);
polynomial | g |
|
polynomial | f |
|
ring | S |
See also: PolyAlg
g := PolyMoveIntegral(f);
polynomial | f |
|
polynomial | g |
See also: PolyMove
beta := PolyNewtonLift(f, alpha, k); beta := PolyNewtonLift(f, alpha, k, a);
algebraic element | alpha |
|
integer (0 if omitted) | a |
|
polynomial | f |
|
integer | k |
|
polynomial | beta |
n := PolyNorm(f);
norm (polynomial) | n |
|
polynomial | f |
h := PolyPowerMod(f, n, g);
polynomial | g |
|
polynomial | f |
|
polynomial | h |
|
positive integer | n |
L := PolyPrimeList(kx, d);
list | L |
|
polynomial algebra | kx |
over finite field k |
integer | d |
See also: PolyPrimeNum, PolyPrimeRandom
f := PolyPrimeNum(kx, d);
polynomial | f |
|
polynomial algebra over k | kx |
|
integer | d |
f := PolyPrimeRandom(kx, d);
polynomial | f |
|
polynomial algebra over k | kx |
|
integer | d |
L := PolyGcd(f, g);
polynomial | g |
|
polynomial | f |
|
list | L |
d := PolyRedDisc(f);
integer | d |
|
polynomial | f |
See also: PolyDisc
r := PolyResultant (f, g);
polynomial | r |
|
polynomial | f |
|
polynomial | g |
See also: PolyGcd
L := PolyRoundFour(f); L := PolyRoundFour(f, p); L := PolyRoundFour(f, p, m);
list | L |
|
polynomial | f |
|
prime number | p |
|
integer | m |
See also: Factor, PolyFactor, OrderMaximal
s := PolySig(f);
polynomial | f |
|
list | s |
g := PolySwapVars (f);
polynomial | g |
|
polynomial | f |
L := PolyToList(f);
list | L |
|
polynomial | f |
See also: Poly
l := PolyXGcd(f, h);
list of polynomials | l |
|
polynomial | f |
|
polynomial | h |
See also: PolyGcd
L := PolyZeros (f [[, "complex"|"int"] [, p [, m ]]]);
list | L |
|
polynomial | f |
Prec(n); Prec();
integer | n |
See also: OrderPrec
PvmClear();
PvmExit
L := PvmGet();
List | L |
L := PvmGetAnswer(true | false);
list | L |
first entry is in {1, 2, 4}, all others arbitrary |
See also: PvmGet
L := PvmGetB();
list | L |
See also: PvmGet
not intended to be called by a user
PvmInit();
s := PvmKashIsSlave();
boolean | s |
PvmLengthOfQueue(n1); n2 := PvmLengthOfQueue();
integer | n1, n2 |
PvmMaxRestartSlave(n1); n2 := PvmMaxRestartSlave();
integer | n1, n2 |
PvmMaxRetransmitJob(n1); n2 := PvmMaxRetransmitJob();
integer | n1, n2 |
PvmPread();
See also: PvmGet
PvmRead();
See also: PvmGet
PvmSecurity(true|false); b := PvmSecurity();
boolean | b |
PvmSendAll(data, data, ...);
ok := PvmSendLast(data, data, ...);
See also: PvmSendNext
PvmSendNext(data, data, ...);
PvmSetPrintLevel(lev);
small integer | lev |
PvmShowBroadcastJobs();
KashPvmError(data, data, ...);
See also: PvmGet
PvmSlaveInfo();
PvmSlavePrint(data, data, ...);
See also: PvmGet
PvmSlaveSend(data, data, ...);
See also: PvmGet
noSlaves := PvmStartSlave(num); noSlaves := PvmStartSlave(host);
integer | noSlaves |
the number of started slaves |
integer | num |
the number of slaves to start. Use 0 to start as many as possible. |
string | host |
start one slave at host. |
list | L |
List of hostnames to start one slave at. |
noSlaves := PvmStopSlave(); noSlaves := PvmStopSlave(stid); noSlaves := PvmStopSlave(L);
integer | noSlaves |
the number of killed slaves |
integer | stid |
slave-tid to kill |
list | L |
List of slave-tids to kill |
PvmStoreOrders
PvmUse(true|false); s := PvmUse();
boolean | s |
PvmUseMastersHost(true|false); s := PvmUseMastersHost();
boolean | s |
PvmUseMsg(true|false); s := PvmUseMsg();
boolean | s |
PvmUseWatch(x, h); s := PvmUseWatch(x); s := PvmUseWatch();
boolean | x |
|
string | h |
hostname |
boolean | s |
Q;
ring | Q |
s := QfName(S);
string | s |
|
polynomial algebra or quotient field | S |
n := QfRank(S);
integer | n |
|
polynomial algebra or quotient field | S |
A := QfScalarRing(S);
ring | A |
|
polynomial algebra or quotient field | S |
See also: PolyAlgCoef
d := QfeDen(f);
quotient field elements | d,f |
dhdT := QfeDeriv(h);
qf elements | dhdT, h |
d := QfeNum(f);
quotient field elements | d,f |
r := QfePthRoot(a);
qf element or bool | r |
r p-th root of a or false |
qf element | a |
See also: AlffEltPthRoot
F := QfeQf(a);
quotient field | F |
|
quotient field element | a |
See also: QuotientField
v := QfeVal(p, a);
integer | v |
|
qf elements | p, a |
See also: InftyVal, PolyFactor
F := Qp(p[,n]);
p-adic field | F |
|
prime number | p |
|
integer | n |
See also: IsQp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpSqrt, QpValuation
k := QpElt(F, n);
p-adic field | F |
|
integer or rational | n |
|
p-adic element | k |
See also: IsQp, Qp, QpEltToQ, QpEltQp, QpExp, QpLog, QpPrec, QpPrime, QpSqrt, QpValuation
F := QpEltQp(k);
p-adic field element | k |
|
p-adic field | F |
See also: IsQp, Qp, QpElt, QpEltToQ, QpPrec, QpExp, QpLog, QpPrime, QpSqrt, QpValuation
q := QpEltToQ(k);
p-adic field | F |
|
p-adic element | k |
|
rational number | q |
See also: IsQp, Qp, QpElt, QpEltQp, QpExp, QpLog, QpPrec, QpPrime, QpSqrt, QpValuation
exp:= QpExp(k);
p-adic element | k |
|
p-adic element | exp |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpLog, QpPrec, QpPrime, QpSqrt, QpValuation
l := QpLog(k);
p-adic element | k |
|
p-adic element | l |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpPrime, QpSqrt, QpValuation
k:= QpPrec(F [,n]);
p-adic field | F |
|
integer | n |
|
integer | k |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpExp, QpLog, QpPrime, QpSqrt, QpValuation
p := QpPrime(F);
p-adic field | F |
|
prime number | p |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpSqrt, QpValuation
s := QpSqrt(k);
p-adic element | k |
|
p-adic element | s |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpPrec, QpExp, QpLog, QpPrime, QpValuation
v := QpValuation(F, k);
p-adic field | F |
|
p-adic element | k |
|
integer | v |
See also: IsQp, Qp, QpElt, QpEltToQ, QpEltQp, QpExp, QpLog, QpPrec, QpPrime, QpSqrt
QF := QuotientField(S);
quotient field | QF |
|
ring | S |
See also: PolyAlg
R;
ring | R |
E := RandomEcc(F);
elliptic curve | E |
|
finite field | F |
alpha := RandomElt(R [, l | b, deg | degl]);
element | alpha |
of o |
ring | R |
may be an order, an ideal, Z, a module, a polynomial algebra or an function field order. |
list | l |
of integers |
integer | b |
equivalent to l := [-b..b] |
integer | deg |
degree of a random element of the |
polynomial algebra R |
||
list | degl |
of positive integers |
id := RandomIdeal(o);
order | o |
|
ideal | id |
m := RandomMatrix(R, n, l);
matrix | m |
in R^{ n \times n} |
ring | R |
may be an order, an ideal, Z, a module or an function field order. |
integer | n |
|
list | l |
of possible (coeffiecents of the) entries. |
o := RandomOrder(R, n [, l]);
order | o |
|
ring | R |
may be Z, an order or an functions field order. |
integer | n |
degree |
list | l |
f := RandomPoly(R, d [, l]);
polynomial | f |
in R[x] |
ring | R |
may be an order, an ideal, Z, a module or an function field order. |
integer | d |
degree of f |
list | l |
of possible (coeffiecents of the) coefficients. |
q := RationalReconstruct (u,m);
rational | q |
|
integer | u |
|
integer | m |
See also: EltReconstruct
elt := RayCantoneseRemainder(m0,minf,elt0,sig);
ideal | m0 |
|
list of integers/infinite primes | minf |
|
algebraic number | elt0 |
|
list | sig |
|
algebraic number | elt |
See also: EltApproximation, EltCon, IdealChineseRemainder, OrderSig, RayResidueRing
c := RayClassField( o | a [, [inf | inf, deg | mat] | deg | mat ] );
list | c |
containg polynomials of o[x] |
order | o |
for Hilbert class field computations |
ideal | a |
used as (part of) an congruence module as for RayClassGroup |
list | inf |
of infinite places as for RayClassGroup |
integer | deg |
if your interesed only in the deg part of the class field |
matrix | mat |
rows of mat define a factorgroup of the RayClassGroup |
See also: RayClassGroup, RayDiscSig, ImQuadRayField, RayConductor, RayConductorTest
a:=RayClassFieldIsAbelian(G [,m]);
AbelianGroup | G |
defining a class group |
boolean | a |
|
integer | m |
aut := RayClassFieldArtin(id, O);
an automorphism | aut |
|
ideal | id |
coprime to the defining module |
order | O |
output of RayClassFieldAuto |
See also: RayClassFieldAuto, RayClassField
L := RayClassFieldAuto(c);
list | L |
containing O and a list of automorphisms |
list | c |
output of RayClassField |
See also: RayClassField
a:=RayClassFieldIsAbelian(G [,m]);
AbelianGroup | G |
defining a class group |
boolean | a |
|
integer | m |
flag := RayClassFieldIsCentral(G [, l]);
boolean | flag |
|
AbelianGroup | G |
a quotient from RayClassGroupToAbelianGroup |
list | l |
of automorphisms, if not present all known automorphisms are used. |
flag := RayClassFieldIsNormal(G [, l]);
boolean | flag |
|
AbelianGroup | G |
a quotient from RayClassGroupToAbelianGroup |
list | l |
of automorphisms, if not present all known automorphisms are used. |
sg := RayClassFieldSplittingField(G, l);
AbelianGroup | sg |
|
AbelianGroup | G |
quotient of RayClassGroupToAbelianGroup |
list | l |
of automorphisms. Must be complete, not just generators. |
L := RayClassGroup(m0 [,minf]); L := RayClassGroup(o [,minf]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
order | o |
See also: EltCon, IdealRayClassRep, OrderClassGroup, OrderPrec, RayClassGroupCyclicFactors, RayConductor
L := RayClassGroupCyclicFactors(m0 [,minf]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, IdealRayClassRep, OrderClassGroup, RayClassGroup
g := RayClassGroupToAbelianGroup(m0 [, minf] [, rels | expo]);
group | g |
|
ideal | m0 |
|
list of integers | minf |
infinite primes |
matrix of integers | rels |
gives additional relations for a quotient |
integer | expo |
equivalent to rels = expo*MatId. |
See also: RayClassGroup
L := RayConductor(m0 [, minf] [, rels]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
matrix | rels |
relation matrix over Z |
See also: EltCon, EltRayResidueRingRep, RayResidueRing, RayClassGroup
b := RayConductorTest(m0 [, minf] [, rels]);
boolean | b |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
matrix | rels |
relation matrix over Z |
See also: EltCon, EltRayResidueRingRep, RayResidueRing, RayClassGroup
L := RayDiscSig(m0 [,minf] [,rels]);
ideal | m0 |
|
list | minf |
of integer/infinite primes |
matrix | rels |
relation matrix over Z |
list | L |
See also: EltCon, OrderDisc, RayConductor, RayClassGroup, RayClassField
L := RayResidueRing(m0 [,minf]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, EltRayResidueRingRep, RayResidueRingRepToElt, RayResidueRingCyclicFactors
L := RayResidueRingCyclicFactors(m0 [,minf]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, IdealRayClassRep, OrderClassGroup, RayClassGroup
b := RayResidueRingRepToElt( r, m0, minf);
algebraic element | b |
|
matrix | r |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: RayResidueRing, RayResidueRingCyclicFactors, EltRayResidueRingRep
g := RayResidueRingToAbelianGroup(m0 [, minf]);
group | g |
|
ideal | m0 |
|
list of integers | minf |
infinite primes |
See also: RayResidueRing
a := Re(z);
real | a |
|
complex | z |
See also: Im
Read(name);
string | name |
ReadLib(name);
string | name |
See also: Read
y := Round(x);
integer | y |
|
real | x |
s := SPrint( obj1, obj2, ... );
string | s |
|
string or kash object | obj1, obj2 |
L := SScan( s, fmt, R1, R2, ...);
list | L |
containing the kash objects |
string | s |
|
string | fmt |
format string |
rings | R1, R2 |
L := SimplexElt(s);
list of coordinates of one integral point | L |
|
simplex | s |
See also: SimplexNext, SimplexInit, SimplexReInit
s := SimplexInit(A, b [ , delta ]);
Simplex | s |
|
real matrix | A |
A \in R^{m \times n} |
real matrix | b |
b \in R^{m} |
real | delta |
should be 1+\epsilon |
See also: SimplexNext, SimplexElt, SimplexReInit
ok := SimplexNext(s);
boolean | ok |
|
simplex | s |
See also: SimplexInit, SimplexElt, SimplexReInit
SimplexReInit(s [, delta ]);
simplex | s |
|
real | delta |
See also: SimplexNext, SimplexElt, SimplexInit
y := Sin(x);
complex | y |
|
complex | x |
Sleep(nSec);
small integer | nSec |
L := Solve(t, A); L := Solve(o, a); L := Solve(f);
list | L |
|
Thue object | t |
|
int | A |
|
order | o |
|
int | algebraic element | a |
|
polynomial | f |
See also: OrderNormEquation, ThueSolve, PolyZeros
y := Sqrt(x);
complex or real | y |
|
complex or real or rational or integer | x |
SubfieldAdd(o, sub, alpha);
order | o |
|
order | sub |
subfield |
algebraic element | alpha |
primitive element of sub in o |
See also: OrderSubfield, OrderSubfieldSub, SubfieldGet
L:=SubfieldGet(o);
list of subfields | L |
|
order | o |
See also: OrderSubfield, OrderSubfieldSub, SubfieldAdd
SubfieldSetDegreeMax(O, d)
order | O |
|
integer | d |
y := Tan(x);
complex | y |
|
complex | x |
t := Thue(o); t := Thue(L); t := Thue(f);
Thue object | t |
|
order | o |
|
list | L |
|
polynomial | f |
a := ThueEval(t,x,y);
int | a |
|
Thue object | t |
|
int | x |
|
int | y |
L := ThueSolve(t,a [,"exact"|"abs"]);
list | L |
|
Thue object | t |
|
int | a |
See also: Solve, Thue, ThueEval
b := Time([true|false]);
boolean | b |
current status of time display |
n := Trace(a); n := Trace(b, o);
algebraic element | alff elt | matrix | ff element | a |
|
algebraic element | ff element | b |
|
order | o |
F := TrialDivision(d, b);
list | F |
|
integer | d |
|
integer | b |
y := Trunc(x);
integer | y |
|
real | x |
d := Valuation( [P,] a); SHOTDOC Computes the valuation of the argument at a prime (if possible).
integer | d |
|
ideal | integer | alff order ideal | P |
must be prime. |
ideal | algebraic element | integer | a |
to valuate. |
alff order ideal | a |
to valuate. |
v := Vec(r,L);
ring | r |
|
list | L |
|
matrix | M |
r := VecDotProduct (u,v);
list | r |
|
matrix | u |
|
matrix | v |
u := WeierstrassP(z, w1, w2);
complex | u |
|
complex | z |
a non-zero element of the complex torus C/Zw_1oplusZw_2 |
complex | w1,w2 |
complex values with Im(w_1/w_2)>0 |
World (arg1, arg2, ...);
object 1 | arg1 |
|
\vdots | \vdots |
|
object n | argn |
Z;
ring | Z |
I := IdealRayClassRep(a);
ideal in Z | I |
|
integer | a |
See also: Ideal
Zx;
See also: PolyAlg, PolyAlgCoef
e;
real | e |
pi;
real | pi |