[back] [prev] [next] [index] [root]

 


AbelianGroupMultiHomCreate

Creates a multilinear mapping.

Syntax:

f := AbelianGroupMultiHomCreate(d, g, t, mat);

group
  d, g, t  
matrix or list of lists
  mat  

See also:  AbelianMultiHomGroup

Description:

Creates a multilinear mapping from a direct product of groups d to a group g. This multilinear mapping corresponds to the homomorphism from the tensor product t of the groups to the group g with the matrix mat. It is recommended to use the second and third entry returned by AbelianMultiHomGroup (see example). It is checked if mat corresponds to a homomorphism. For a second possibility to create multilinear mappings see \hyperlink{AbelianMultiHomGroup}{AbelianMultiHomGroup}.


Example:


kash> g1 := AbelianGroupCreate(Mat(Z,[[2]]));;
kash> g2 := AbelianGroupCreate(Mat(Z,[[4]]));;
kash> h := AbelianGroupCreate(Mat(Z,[[8,0],[0,2]]));;
kash> l := AbelianMultiHomGroup([g1,g2], h);
[ Group with relations:
    [2 0]
    [0 2], Group with relations:
    [2 0]
    [0 4], Group with relations:
    [2] ]



Example:

direct product d = g1\times g2:

kash> d := l[2];
Group with relations:
[2 0]
[0 4]



Example:

tensor product t = g1otimes g2:

kash> t := l[3];
Group with relations:
[2]



Example:

create the multilinear mapping:

kash> f := AbelianGroupMultiHomCreate(d, h, t, [[0,1]]);
MultiHom [ 1, 1 ] from Group with relations:
[2 0]
[0 4] to Group with relations:
[8 0]
[0 2]

kash> elt := AbelianGroupEltCreate(d, [1,1]);
[1 1]
kash> AbelianGroupEltReduce(f*elt, true);
[0 1]
kash> f := AbelianGroupMultiHomCreate(d, h, t, [[1,0]]);
false
kash> AbelianGroupPrintLevel := 1;
1
kash> f := AbelianGroupMultiHomCreate(d, h, t, [[1,0]]);
false
kash> AbelianGroupPrintLevel := 0;
> 0


<- back[back] [prev] [next] [index] [root]