[back] [prev] [next] [index] [root]

 


AbelianGroupEltReduce

Returns a reduced representation of a group element.

Syntax:

elt2 := AbelianGroupEltReduce(elt1 [, positive]);

group element
  elt1  
group element
  elt2  
reduced representation
boolean
  positive  

Description:

Returns the reduced representation elt2 of a group element (exponent vector) elt1. If the second (optional) parameter is true then all entries of elt2 are non negative. Only in this case it is sure that a good reduction is performed.


Example:


kash> g := AbelianGroupCreate(Mat(Z, [[2,1], [1,3]]));
Group with relations:
[2 1]
[1 3]
kash> elt1 := AbelianGroupEltCreate(g, [-100, -217]);
[-100 -217]
kash> elt2 := AbelianGroupEltReduce(elt1);
[-100 -217]
kash> AbelianGroupSmithCreate(g);
Group with relations:
[5]
kash> elt2 := AbelianGroupEltReduce(elt1);
[-1  0]
kash> elt2 := AbelianGroupEltReduce(elt1, true);
> [4 0]


<- back[back] [prev] [next] [index] [root]