[back] [prev] [next] [index] [root]
a := IdealMakeInvCoprime(I1,I2);
ideals | A, B |
must be integral |
algebraic number | a |
See also: IdealMakeCoprime
kash> O := OrderMaximal(Order(Poly(Zx,[1,-2,57,-56,602]))); F[1] | F[2] / / Q F [ 1] Given by transformation matrix F [ 2] x^4 - 2*x^3 + 57*x^2 - 56*x + 602 Discriminant: 529984 kash> LP := List(Factor(210*O), x->x[1]); [ <2, [0, 1, 0, 0]>, <2, [1, 1, 0, 0]>, <3, [1, 0, 1, 0]>, <3, [2, 1, 1, 0]>, <5, [3, 0, 1, 0]>, <5, [4, 3, 1, 0]>, <7, [0, 1, 0, 0]>, <7, [6, 1, 0, 0]> ] kash> A := LP[1]^2*LP[3]*LP[6]; < [30 0 4 17] [ 0 30 18 2] [ 0 0 1 0] [ 0 0 0 1] > kash> B := LP[1]^2*LP[4]*LP[5]; < [30 0 8 17] [ 0 30 10 28] [ 0 0 1 0] [ 0 0 0 1] > kash> c := IdealMakeInvCoprime(A,B); [-195, -206, 11, -7] kash> D := c/A; < [-195 -382 -67 -26] [-206 -442 -88 -103] [ 11 -555 99 -92] [ -7 724 -376 -9] > kash> IdealIdempotents([D,B]); > [ 1623181771, -1623181770 ]
<- back[back] [prev] [next] [index] [root]