[back] [prev] [next] [index] [root]

 


RayClassFieldArtin

Given an ideal, this function computes the corresponding automorphism.

Syntax:

aut := RayClassFieldArtin(id, O);

an automorphism
  aut  
ideal
  id  
coprime to the defining module
order
  O  
output of RayClassFieldAuto

See also:  RayClassFieldAuto, RayClassField

Description:

This function essentially provides (\a, O/o)\inGal(O/o) for given unramified ideals. Note, that this function won't check if the conductor of the abelian extension is known. Therefore it is only possible to compute automorphisms for ideals coprime to the defining module.\par Note, that this function won't work on an arbitraily defined abelian extensions O of o. It is necessary to compute O using RayClassFieldAuto.


Example:



<- back[back] [prev] [next] [index] [root]