[back] [prev] [next] [index] [root]

 


AlffDivisorLDim

Dimension of a Riemann-Roch space.

Syntax:

l := AlffDivisorLDim(D);

integer
  l  
alff divisor
  D  

See also:  AlffDivisorLBasis, AlffDivisorLIndex, AlffDivisorDeg, AlffGenus, Alff

Description:

Let F = k(T,y) be an algebraic function field defined by f(T,y)=0 over k. Given a divisor D of F this function returns the dimension of {cal L}(D) as a k-vector space. Note that the field k is the constant field of definition (not the exact constant field) of F.


Example:


kash> AlffInit(FF(5,1));;
kash> AlffOrders(y^2+T^3+1);;
kash> infty := AlffPlaceSplit(F, 1/T)[1];
Alff place < [ 1/T, 0 ], [ 0, 1 ] >
kash> l := AlffPlaceSplit(F, T+3);
[ Alff place < [ T + 3, 0 ], [ 1, 1 ] >, 
  Alff place < [ T + 3, 0 ], [ 4, 1 ] > ]
kash> D := 2*infty + 3*l[1] - l[2];
Alff divisor
[ [ Alff place < [ 1/T, 0 ], [ 0, 1 ] >, 2 ],
[ Alff place < [ T + 3, 0 ], [ 1, 1 ] >, 3 ],
[ Alff place < [ T + 3, 0 ], [ 4, 1 ] >, -1 ] ]

kash> AlffDivisorLDim(D);
> 4


<- back[back] [prev] [next] [index] [root]