[back] [prev] [next] [index] [root]

 


IdealPrimeCountNext

Enumerates the next prime ideal.

Syntax:

p := IdealPrimeCountNext(s [, 1]);

prime ideal
  p  
record
  s  
from IdealPrimeCountInit
if present, p will be a pair [p, f] with p a prime of the coefficient order and f the degree of p
  1  

See also:  IdealPrimeCountInit

Description:

Be careful with relative extensions: index divisors won't work here!


Example:

We'll work in the field Q(\sqrt 2):

kash> o := OrderMaximal(Z, 2, 2);
Generating polynomial: x^2 - 2
Discriminant: 8 

kash> s := IdealPrimeCountInit(o);
Record of type IdealPrimeCount

kash> repeat
> p := IdealPrimeCountNext(s);
> Print(p, "\n");
> until IdealMin(p)>20;
<2, [0, 1]>
<3>
<5>
<7, [3, 1]>
<7, [4, 1]>
<11>
<13>
<17, [6, 1]>
<17, [11, 1]>
<19>
<23, [5, 1]>



Example:

Next, only the factorization shape of ideals coprime to 2 is investigated:

kash> s := IdealPrimeCountInit(o, 2);
Record of type IdealPrimeCount

kash> repeat
> fs := IdealPrimeCountNext(s, 1);
> Print(fs, "\n");
> until fs[1]>20;
> [ 3, 2 ]
[ 5, 2 ]
[ 7, 1 ]
[ 11, 2 ]
[ 13, 2 ]
[ 17, 1 ]
[ 19, 2 ]
[ 23, 1 ]


<- back[back] [prev] [next] [index] [root]