[back] [prev] [next] [index] [root]
p := IdealPrimeCountNext(s [, 1]);
prime ideal | p |
|
record | s |
from IdealPrimeCountInit |
if present, p will be a pair [p, f] with p a prime of the coefficient order and f the degree of p | 1 |
See also: IdealPrimeCountInit
kash> o := OrderMaximal(Z, 2, 2); Generating polynomial: x^2 - 2 Discriminant: 8 kash> s := IdealPrimeCountInit(o); Record of type IdealPrimeCount kash> repeat > p := IdealPrimeCountNext(s); > Print(p, "\n"); > until IdealMin(p)>20; <2, [0, 1]> <3> <5> <7, [3, 1]> <7, [4, 1]> <11> <13> <17, [6, 1]> <17, [11, 1]> <19> <23, [5, 1]>
kash> s := IdealPrimeCountInit(o, 2); Record of type IdealPrimeCount kash> repeat > fs := IdealPrimeCountNext(s, 1); > Print(fs, "\n"); > until fs[1]>20; > [ 3, 2 ] [ 5, 2 ] [ 7, 1 ] [ 11, 2 ] [ 13, 2 ] [ 17, 1 ] [ 19, 2 ] [ 23, 1 ]
<- back[back] [prev] [next] [index] [root]