[back] [prev] [next] [index] [root]

 


IdealRamIndex

Calculates the ramification index of a prime ideal.

Syntax:

d := IdealRamIndex(I);

ideal
  I  
must be prime
integer
  d  

See also:  IdealDegree

Description:

Let O a maximal order. Let p be a prime number and \p a prime O-ideal over this prime number p. The natural number e which satisfies \p^e | pO and \p^{e+1} \nmid pO is called the ramification index of \p over p.


Example:


kash> O := OrderMaximal(Order(Poly(Zx,[1,4,1,-4,-3,7])));
Generating polynomial: x^5 + 4*x^4 + x^3 - 4*x^2 - 3*x + 7
Discriminant: 28442269 

kash> P := Factor(6*O)[2][1];
<2, [1, 0, 0, 1, 1]>
kash> IdealDegree(P);
4
kash> IdealRamIndex(P);
> 1


<- back[back] [prev] [next] [index] [root]