[back] [prev] [next] [index] [root]
L := AlffPlaceSplit(F, p);
list | L |
of places {frak P} above {frak p} |
algebraic function field | F |
|
prime polynomial or 1/T | p |
See also: AlffPlaceRam, AlffPlaceDeg, AlffPlaceResDeg, AlffEltValuation
kash> AlffInit(FF(2,3)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> F := Alff(y^3+T^3*y+T); Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(2^3) Variables: T kash> L := AlffPlaceSplit(F, 1/T); [ Alff place < [ 1/T, 0, 0 ], [ w^4/T, w^3/T, (w^4*T + w^4)/T ] >, Alff place < [ 1/T, 0, 0 ], [ (w^4*T + 1)/T, (w*T + w^2)/T, (w^4*T + w^6)/T \ ] > ] kash> L := AlffPlaceSplit(F, T+1); > [ Alff place < [ T + 1, 0, 0 ], [ w, 1, 0 ] >, Alff place < [ T + 1, 0, 0 ], [ w^2, 1, 0 ] >, Alff place < [ T + 1, 0, 0 ], [ w^4, 1, 0 ] > ]
<- back[back] [prev] [next] [index] [root]