[back] [prev] [next] [index] [root]

 


AlffPlaceSplit

Decompose a rational function field place.

Syntax:

L := AlffPlaceSplit(F, p);

list
  L  
of places {frak P} above {frak p}
algebraic function field
  F  
prime polynomial or 1/T
  p  

See also:  AlffPlaceRam, AlffPlaceDeg, AlffPlaceResDeg, AlffEltValuation

Description:

Let F = k(T,y) be an algebraic function field defined by f(T, y)=0 over k. This function computes the places {frak P} of F lying above a place {frak p} of k(T) given by a prime polynomial of k[T] or 1/T, the later specifying the place at infinity (degree valuation). A list containing the places is returned.


Example:


kash> AlffInit(FF(2,3));
"Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals"
kash> F := Alff(y^3+T^3*y+T);
Algebraic function field defined by
.1^3 + .1*.2^3 + .2
over
Univariate rational function field over GF(2^3)
Variables: T

kash> L := AlffPlaceSplit(F, 1/T);
[ Alff place < [ 1/T, 0, 0 ], [ w^4/T, w^3/T, (w^4*T + w^4)/T ] >, 
  Alff place < [ 1/T, 0, 0 ], [ (w^4*T + 1)/T, (w*T + w^2)/T, (w^4*T + w^6)/T \
] > ]
kash> L := AlffPlaceSplit(F, T+1);
> [ Alff place < [ T + 1, 0, 0 ], [ w, 1, 0 ] >, 
  Alff place < [ T + 1, 0, 0 ], [ w^2, 1, 0 ] >, 
  Alff place < [ T + 1, 0, 0 ], [ w^4, 1, 0 ] > ]


<- back[back] [prev] [next] [index] [root]