TU-Berlin
→
Inst. f. Mathematik
→
Algebra und Zahlentheorie
→
KASH
→
Documentation
→
Index
KASH
3
Index
Introduction
Reference Manual
Index
other
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
search
P
pad
pAdicField ( elt-ord^rat ) -> fld^pad
pAdicField ( elt-ord^rat, elt-ord^inf ) -> fld^pad
pAdicField ( elt-ord^rat, elt-ord^rat ) -> fld^pad
pAdicField ( fld^pad ) -> fld^pad
pAdicQuotientRing ( elt-ord^rat, elt-ord^rat ) -> res^pad
pAdicRing ( elt-ord^rat ) -> ord^pad
pAdicRing ( elt-ord^rat, elt-ord^inf ) -> ord^pad
pAdicRing ( elt-ord^rat, elt-ord^rat ) -> ord^pad
pAdicRing ( ord^pad ) -> ord^pad
pAdicRing ( res^pad ) -> res^pad
Parent ( any ) -> any
Parent ( elt-alg^pol/ord^pow ) -> alg^pol
Parent ( elt-alg^pol/res^pow ) -> alg^pol/ord^pow
Parent ( elt-grp^ell ) -> grp^ell
Parent ( elt-ord^pow ) -> ord^pow
Parent ( elt-res^pow ) -> res^pow
ParentRing ( newtgon ) -> rng
PartialFactorization ( seq(elt-ord^rat) ) -> seq()
Partition ( seq(), elt-ord^rat ) -> seq()
Partition ( seq(), seq(elt-ord^rat) ) -> seq()
Partitions ( elt-ord^rat ) -> seq()
Partitions ( elt-ord^rat, elt-ord^rat ) -> seq()
PENDING -> void
per
PermList ( list ) -> elt-grp^per
Permuted ( list, elt-grp^per )
pFundamentalUnits ( fld^num, elt-ord^rat ) -> grp^abl, map()
pFundamentalUnits ( ord^num, elt-ord^rat ) -> grp^abl, map()
PI -> elt-fld^rea
Pi -> elt-fld^rea
Pi ( fld^com ) -> elt-fld^com
Pi ( fld^rea ) -> elt-fld^rea
Pipe ( string, string ) -> string
Place ( elt-grp^ell ) -> elt-pls/fld^fun
Place ( elt-ids^int/ord^fun ) -> elt-pls/fld^fun
Place ( elt-ids^int/ord^num ) -> elt-pls/fld^num
Places ( fld^fun ) -> pls/fld^fun
Places ( fld^fun, elt-ord^rat ) -> seq()
Places ( fld^num ) -> pls/fld^num
pls
pls/fld^fun
pls/fld^num
pMaximalOrder ( ord^fun, elt-alg^pol ) -> ord^fun
pMaximalOrder ( ord^fun, elt-ids^int/ord^fun ) -> ord^fun
pMaximalOrder ( ord^num, elt-ids^int/ord^num ) -> ord^num
pMaximalOrder ( ord^num, elt-ord^rat ) -> ord^num
Point ( elt-pls/fld^fun, elt-grp^ell ) -> elt-grp^ell
Points ( grp^ell ) -> list
pol
PolarToComplex ( elt-fld^rea, elt-fld^rea ) -> elt-fld^com
Poles ( elt-fld^fun ) -> seq()
Poles ( elt-ord^fun ) -> seq()
Poly ( alg^pol, list ) -> elt-alg^pol
Polynomial ( newtgon ) -> elt-alg^pol
PolynomialAlgebra ( ord^pow ) -> alg^pol/ord^pow
PolynomialAlgebra ( res^pow ) -> alg^pol/res^pow
PolynomialAlgebra ( rng ) -> alg^pol
PolynomialRing ( ord^pow ) -> alg^pol/ord^pow
PolynomialRing ( res^pow ) -> alg^pol/res^pow
PolynomialRing ( rng ) -> alg^pol
Polynomials
Position ( alist, any ) -> elt-ord^rat
Position ( dry, any ) -> elt-ord^rat
Position ( list, any ) -> elt-ord^rat
Position ( string, char ) -> elt-ord^rat
PositionProperty ( func ) -> func
PositionProperty ( func, list ) -> elt-ord^rat
PositionProperty ( func, seq() ) -> elt-ord^rat
PositionProperty ( func, string ) -> elt-ord^rat
PositionProperty ( list, func ) -> elt-ord^rat
PositionProperty ( seq(), func ) -> elt-ord^rat
PositionProperty ( string, func ) -> elt-ord^rat
Positions ( list, any ) -> seq(elt-ord^rat)
PositionSorted ( list, any ) -> elt-ord^rat
PositiveDefiniteForm ( seq(elt-alg^mat), elt-ord^rat ) -> elt-alg^boo, elt-alg^mat
PositiveSum ( map(), elt-ord^rat ) -> elt-fld^rea
pow
PowerIdeal ( rng ) -> ids/ord^num
PowerMap ( grp^abl ) -> map()
PowerMod ( elt-ord^rat, elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
PowerProduct ( elt-alg^mat, elt-alg^mat ) -> elt-rng
PowerProduct ( seq(), seq() ) -> elt-rng
PowerRelation ( elt-fld^com, elt-ord^rat ) -> elt-alg^pol
PowerRelation ( elt-fld^rea, elt-ord^rat ) -> elt-alg^pol
PowerSeriesAlgebra ( rng ) -> ord^ser
PowerSeriesAlgebra ( rng, elt-ord^rat ) -> ord^ser
PowerSeriesField ( fld^fin, elt-alg^pol ) -> fld^pow
PowerSeriesField ( fld^fin, elt-alg^pol, elt-ord^rat ) -> fld^pow
PowerSeriesRing ( fld^fin, elt-alg^pol ) -> ord^pow
PowerSeriesRing ( fld^fin, elt-alg^pol, elt-ord^rat ) -> ord^pow
PowerSeriesRing ( rng ) -> ord^ser
PowerSeriesRing ( rng, elt-ord^rat ) -> ord^ser
pPlus1 ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
pRadical ( ord^fun, elt-alg^pol ) -> elt-ids^int/ord^fun
pRadical ( ord^fun, elt-ids^int/ord^fun ) -> elt-ids^int/ord^fun
pRadical ( ord^num, elt-ids^int/ord^num ) -> elt-ids^int/ord^num
pRadical ( ord^num, elt-ord^rat ) -> elt-ids^int/ord^num
Precision -> elt-ord^rat
Precision ( elt-fld^com ) -> elt-ord^rat
Precision ( elt-fld^pad ) -> elt-ord^rat
Precision ( elt-fld^rea ) -> elt-ord^rat
Precision ( elt-ord^pad ) -> elt-ord^rat
Precision ( elt-ord^rat ) -> elt-ord^rat
Precision ( elt-res^pad ) -> elt-ord^rat
Precision ( fld^com ) -> elt-ord^rat
Precision ( fld^pad ) -> elt-ord^rat
Precision ( fld^rea ) -> elt-ord^rat
Precision ( ord^pad ) -> elt-ord^rat
Precision ( ord^pow ) -> elt-ord^rat
Precision ( res^pad ) -> elt-ord^rat
Precision ( res^pow ) -> elt-ord^rat
Preface
Preimage ( any, map() ) -> any
Preimages ( alist, any ) -> any
PreviousPrime ( elt-ord^rat ) -> elt-ord^rat
Prime ( fld^pad ) -> elt-ord^rat
Prime ( newtgon ) -> any
Prime ( ord^pad ) -> elt-ord^rat
Prime ( res^pad ) -> elt-ord^rat
PrimeBasis ( elt-ord^rat ) -> seq()
PrimeBasis ( seq() ) -> seq()
PrimeDivisors ( elt-ord^rat ) -> seq()
PrimeDivisors ( seq() ) -> seq()
PrimeField ( fld ) -> fld
PrimeField ( fld^fin ) -> fld^fin
PrimePolynomials ( alg^pol, elt-ord^rat ) -> seq()
PrimePolynomials ( alg^pol, elt-ord^rat, elt-ord^rat ) -> seq()
PrimePowerRepresentation ( elt-fld^fun, elt-ord^rat, elt-fld^fun ) -> seq()
PrimeRing ( rng ) -> rng
PrimesInInterval ( elt-ord^rat, elt-ord^rat ) -> seq()
PrimesUpTo ( elt-ord^rat ) -> seq()
PrimitiveElement ( elt-ids^fra/ord^num ) -> elt-fld^fra
PrimitiveElement ( elt-ids^int/ord^fun ) -> elt-fld^fun
PrimitiveElement ( fld^fin ) -> elt-fld^fin
PrimitiveElement ( fld^fra ) -> elt-fld^fra
PrimitiveElement ( fld^num ) -> elt-fld^num
PrimitiveElement ( ord^fun ) -> elt-ord^fun
PrimitiveElement ( ord^num ) -> elt-ord^num
PrimitiveElement ( res^rat ) -> elt-res^rat
PrimitiveGroupDatabaseLimit999 -> elt-ord^rat
PrimitivePart ( elt-alg^pol ) -> elt-alg^pol
PrimitivePolynomial ( fld^fin, elt-ord^rat ) -> elt-alg^pol
PrimitiveRoot ( elt-ord^rat ) -> elt-ord^rat
PrimitiveRoot ( res^rat ) -> elt-res^rat
PrincipalDivisor ( elt-fld^fun ) -> elt-dvs/fld^fun
PrincipalDivisor ( elt-ord^fun ) -> elt-dvs/fld^fun
Print ( nof() )
Print ( record )
PrintString ( nof(string) )
PrintTo ( string, nof() )
Product ( func ) -> any
Product ( func, list ) -> any
Product ( list ) -> any
Product ( list, func ) -> any
Product ( seq() ) -> any
Product ( tup() ) -> any
ProductRepresentation ( elt-fld^fra ) -> seq(), seq()
ProductRepresentation ( elt-fld^fun ) -> seq(), seq()
ProductRepresentation ( elt-ord^fun ) -> seq(), seq()
ProductRepresentation ( elt-ord^num ) -> seq(), seq()
ProductRepresentation ( seq(elt-fld^fra), seq(elt-ord^rat) ) -> elt-fld^fra
ProductRepresentation ( seq(elt-fld^fun), seq(elt-ord^rat) ) -> elt-fld^fun
Profile
Profile ( elt-alg^boo )
Programming Language
Properties of GAP groups/objects
Prune ( seq() ) -> seq()
Prune ( tup() ) -> tup()
Prune_ ( seq() )
Prune_ ( tup() )
PseudoBasis ( mdl^ded ) -> seq()
PseudoGenerators ( mdl^ded ) -> seq()
PseudoInverse ( elt-alg^mat ) -> elt-alg^mat, elt-rng
PseudoRemainder ( elt-alg^pol, elt-alg^pol ) -> elt-alg^pol
Psi ( elt-fld^rea ) -> elt-fld^rea
pui
PuiseuxExpansion ( elt-alg^pol, elt-ord^rat ) -> seq()
PuiseuxExponents ( elt-rng^ser ) -> seq()
PuiseuxExponentsCommon ( elt-rng^ser, elt-rng^ser ) -> seq()
PuiseuxSeriesRing ( rng ) -> fld^pui
PuiseuxSeriesRing ( rng, elt-ord^rat ) -> fld^pui
PuiseuxToParametrization ( elt-rng^ser ) -> tup()
Put ( alist, any, any ) -> alist
PutAssoc ( alist, any, any ) -> alist
PutAssoc ( alist, list ) -> alist
PutAssoc_ ( alist, any, any )
PutAssoc_ ( alist, list )
Put_ ( alist, any, any )
Built: Mon Nov 14 21:15:56 UTC 2005 on mack
The KANT Group