TU-Berlin
→
Inst. f. Mathematik
→
Algebra und Zahlentheorie
→
KASH
→
Documentation
→
Index
KASH
3
Index
Introduction
Reference Manual
Index
other
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
search
M
MakeCoprime ( elt-ids^int/ord^num, elt-ids^int/ord^num ) -> elt-fld^fra
MakePoint ( grp^ell, list ) -> elt-grp^ell
MakePoints ( grp^ell, elt-fld^fin ) -> elt-grp^ell
MantissaExponent ( elt-fld^rea ) -> elt-fld^rea, elt-ord^rat
map
Map ( any, any, func ) -> map()
Map ( any, any, func, func ) -> map()
MapAlist ( alist, func )
MapAlist ( func, alist )
Mapc ( func, list )
Mapconcat ( func, list ) -> string
Mapconcat ( func, list, string ) -> string
Maps
mat
Matrices
Matrix ( elt-alg^mat ) -> elt-alg^mat
Matrix ( elt-ord^rat, elt-ord^rat, elt-alg^mat ) -> elt-alg^mat
Matrix ( elt-ord^rat, elt-ord^rat, seq(elt-rng) ) -> elt-alg^mat
Matrix ( elt-ord^rat, elt-ord^rat, seq(tup()) ) -> elt-alg^mat
Matrix ( elt-ord^rat, seq(elt-rng) ) -> elt-alg^mat
Matrix ( list ) -> elt-alg^mat
Matrix ( rng, elt-alg^mat ) -> elt-alg^mat
Matrix ( rng, elt-ord^rat, elt-ord^rat, seq(elt-rng) ) -> elt-alg^mat
Matrix ( rng, elt-ord^rat, elt-ord^rat, seq(tup()) ) -> elt-alg^mat
Matrix ( rng, elt-ord^rat, seq(elt-rng) ) -> elt-alg^mat
Matrix ( seq(elt-alg^mat) ) -> elt-alg^mat
Matrix ( seq(seq()) ) -> elt-alg^mat
MatrixAlgebra ( alg^mat, fld^fin ) -> alg^mat, map()
MatrixAlgebra ( fld^fin, fld^fin ) -> alg^mat, map()
MatrixAlgebra ( rng, elt-ord^rat ) -> alg^mat
MatrixRing ( alg^mat, fld^fin ) -> alg^mat, map()
MatrixRing ( fld^fin, fld^fin ) -> alg^mat, map()
MatrixRing ( rng, elt-ord^rat ) -> alg^mat
MatrixUnit ( alg^mat, elt-ord^rat, elt-ord^rat ) -> elt-alg^mat
Max ( any, elt-ord^inf ) -> any
Max ( elt-fld^rat, elt-fld^rat ) -> elt-fld^rat
Max ( elt-fld^rea, elt-fld^rea ) -> elt-fld^rea
Max ( elt-ord^inf, any ) -> any
Max ( elt-ord^inf, elt-ord^inf ) -> any
Max ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Max ( seq() ) -> any, elt-ord^rat
MaximalIdeals ( alg^mat ) -> seq(), elt-alg^boo
MaximalOrder ( elt-alg^pol ) -> ord^num
MaximalOrder ( fld^fra ) -> ord^num
MaximalOrder ( ord^fun ) -> ord^fun
MaximalOrder ( ord^num ) -> ord^num
MaximalOrderFinite ( fld^fun ) -> ord^fun
MaximalOrderInfinite ( fld^fun ) -> ord^fun
MaximalSubgroups ( grp^abl ) -> seq()
Maximum ( any, elt-ord^inf ) -> any
Maximum ( elt-fld^rat, elt-fld^rat ) -> elt-fld^rat
Maximum ( elt-fld^rea, elt-fld^rea ) -> elt-fld^rea
Maximum ( elt-ord^inf, any ) -> any
Maximum ( elt-ord^inf, elt-ord^inf ) -> any
Maximum ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Maximum ( seq() ) -> any
Maximum ( set ) -> any
Maximum ( tup() ) -> any
MaxNorm ( elt-alg^pol ) -> elt-ord^rat
mdl
mdl/fld
mdl^ded
mdl^mat
mdl^vec
mdl^vec/fld
MemProfile
MergeDocumentation ( record )
MergeUnits ( fld^num, elt-fld^num ) -> elt-alg^boo
MergeUnits ( ord^num, elt-ord^num ) -> elt-alg^boo
Methods
Min ( any, elt-ord^inf ) -> any
Min ( elt-fld^fun, ord^fun ) -> elt-rng, elt-rng
Min ( elt-fld^rat, elt-fld^rat ) -> elt-fld^rat
Min ( elt-fld^rea, elt-fld^rea ) -> elt-fld^rea
Min ( elt-ids^fra/ord^num ) -> elt-rng
Min ( elt-ids^int/ord^fun ) -> elt-rng, elt-rng
Min ( elt-ord^fun, ord^fun ) -> elt-rng, elt-rng
Min ( elt-ord^inf, any ) -> any
Min ( elt-ord^inf, elt-ord^inf ) -> elt-ord^inf
Min ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Min ( elt-pls/fld^fun ) -> elt-rng
Min ( seq() ) -> any, elt-ord^rat
MinimalCyclotomicField ( elt-fld^rat ) -> rng
MinimalPolynomial ( elt-fld^fin ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^fin, fld^fin ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^fra ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^fra, rng ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^fun ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^fun, rng ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^pad ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^pad, fld^pad ) -> elt-alg^pol
MinimalPolynomial ( elt-fld^rat ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^fun ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^fun, rng ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^num ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^num, rng ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^pad ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^pad, ord^pad ) -> elt-alg^pol
MinimalPolynomial ( elt-ord^rat ) -> elt-alg^pol
MinimalPolynomial ( elt-res^pad ) -> elt-alg^pol
MinimalPolynomial ( elt-res^pad, res^pad ) -> elt-alg^pol
MinimalPolynomial ( elt-res^pol ) -> elt-alg^pol
Minimum ( any, elt-ord^inf ) -> any
Minimum ( elt-fld^fun, ord^fun ) -> elt-rng, elt-rng
Minimum ( elt-fld^rat, elt-fld^rat ) -> elt-fld^rat
Minimum ( elt-fld^rea, elt-fld^rea ) -> elt-fld^rea
Minimum ( elt-ids^fra/ord^num ) -> elt-rng
Minimum ( elt-ids^int/ord^fun ) -> elt-rng, elt-rng
Minimum ( elt-ord^fun, ord^fun ) -> elt-rng, elt-rng
Minimum ( elt-ord^inf, any ) -> any
Minimum ( elt-ord^inf, elt-ord^inf ) -> elt-ord^inf
Minimum ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Minimum ( elt-pls/fld^fun ) -> elt-rng
Minimum ( seq() ) -> any
Minimum ( set ) -> any
Minimum ( tup() ) -> any
MinkowskiBound ( fld^num ) -> elt-ord^rat
MinkowskiBound ( ord^num ) -> elt-ord^rat
MinusInfinity -> elt-ord^inf
elt-alg^pol
mod
elt-alg^pol -> elt-alg^pol
elt-dvs/fld^fun
mod
elt-ord^rat -> elt-dvs/fld^fun
elt-grp^per
mod
elt-grp^per -> elt-grp^per
elt-ord^fun
mod
elt-ids^int/ord^fun -> elt-ord^fun
elt-ord^num
mod
elt-ids^int/ord^num -> elt-ord^num
elt-ord^rat
mod
elt-ord^rat -> elt-ord^rat
elt-pls/fld^fun
mod
elt-ord^rat -> elt-dvs/fld^fun
record
mod
record -> any
Modexp ( elt-alg^pol, elt-ord^rat, elt-alg^pol ) -> elt-alg^pol
Modexp ( elt-ord^fun, elt-ord^rat, elt-rng ) -> elt-ord^fun
Modexp ( elt-ord^num, elt-ord^rat, elt-ord^rat ) -> elt-ord^num
Modexp ( elt-ord^rat, elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Modinv ( elt-alg^pol, elt-alg^pol ) -> elt-alg^pol
Modinv ( elt-ord^fun, elt-ids^int/ord^fun ) -> elt-ord^fun
Modinv ( elt-ord^fun, elt-rng ) -> elt-ord^fun
Modinv ( elt-ord^num, elt-ids^int/ord^num ) -> elt-ord^num
Modinv ( elt-ord^num, elt-ord^rat ) -> elt-ord^num
Modinv ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Modorder ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Modsqrt ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Module ( elt-ids^fra/ord^num ) -> mdl^ded, map()
Module ( elt-ids^int/ord^fun ) -> mdl^ded, map()
Module ( ord^fun ) -> mdl^ded, map()
Module ( ord^fun, elt-ord^rat ) -> mdl^ded
Module ( ord^num ) -> mdl^ded, map()
Module ( ord^num, elt-ord^rat ) -> mdl^ded
Module ( seq(elt-ids^fra/ord^num) ) -> mdl^ded
Module ( seq(elt-ids^int/ord^fun) ) -> mdl^ded
Module ( seq(elt-mdl) ) -> mdl^ded, map(), elt-mdl^mat
Module ( seq(elt-mdl^vec) ) -> mdl^ded, map(), elt-mdl^mat
Module ( seq(tup()) ) -> mdl^ded, map()
Modules and Lattices
Moduli ( mdl^vec ) -> seq()
Modulus ( elt-fld^com ) -> elt-fld^rea
Modulus ( elt-fld^rea ) -> elt-fld^rea
Modulus ( res^num ) -> elt-ord^rat
Modulus ( res^pad ) -> elt-ord^rat
Modulus ( res^pol ) -> elt-alg^pol
Modulus ( res^rat ) -> elt-ord^rat
MoebiusMu ( elt-ord^rat ) -> elt-ord^rat
MoebiusMu ( seq() ) -> elt-ord^rat
MonomialCoefficient ( elt-alg^pol, elt-alg^pol ) -> elt-rng
MonomialCoefficient ( elt-res^pol, elt-res^pol ) -> elt-rng
Morphism ( grp^abl, grp^abl ) -> elt-mdl^mat
Morphism ( mdl, mdl ) -> elt-mdl^mat
Morphism ( mdl^ded, mdl^ded ) -> map()
Multinomial ( elt-ord^rat, seq(elt-ord^rat) ) -> elt-ord^rat
MultiplicationTable ( ord^fun ) -> seq()
MultiplicationTable ( ord^num ) -> seq()
MultiplicativeGroup ( fld^fin ) -> grp^abl, map()
MultiplicativeGroup ( fld^num ) -> grp^abl, map()
MultiplicativeGroup ( ord^num ) -> grp^abl, map()
MultiplicativeGroup ( ord^rat ) -> grp^abl, map()
MultiplicativeGroup ( res^num ) -> grp^abl, map()
MultiplicativeGroup ( res^pad ) -> grp^abl, map()
MultiplicativeGroup ( res^rat ) -> grp^abl, map()
MultiplicatorRing ( elt-ids^fra/ord^num ) -> rng
MultiplicatorRing ( elt-ids^int/ord^fun ) -> ord^fun
MultiplyColumn ( elt-alg^mat, elt-rng, elt-ord^rat ) -> elt-alg^mat
MultiplyColumn_ ( elt-alg^mat, elt-rng, elt-ord^rat )
MultiplyRow ( elt-alg^mat, elt-rng, elt-ord^rat ) -> elt-alg^mat
MultiplyRow_ ( elt-alg^mat, elt-rng, elt-ord^rat )
Built: Mon Nov 14 21:15:56 UTC 2005 on mack
The KANT Group