TU-Berlin
→
Inst. f. Mathematik
→
Algebra und Zahlentheorie
→
KASH
→
Documentation
→
Index
KASH
3
Index
Introduction
Reference Manual
Index
other
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Z
search
I
I -> elt-fld^com
Id ( dif/fld^fun ) -> elt-dif/fld^fun
Id ( dvs/fld^fun ) -> elt-dvs/fld^fun
Id ( grp^abl ) -> elt-grp^abl
Id ( rng ) -> elt-rng
Ideal ( any, nof(any) ) -> elt-ids
IdealQuotient ( elt-ids^fra/ord^num, elt-ids^fra/ord^num ) -> elt-ids^fra/ord^num
IdealQuotient ( elt-ids^int/ord^fun, elt-ids^int/ord^fun ) -> elt-ids^int/ord^fun
Ideals
Ideals ( elt-dvs/fld^fun ) -> elt-ids^int/ord^fun, elt-ids^int/ord^fun
Ideals and Divisors
Idempotents ( elt-ids^int/ord^fun, elt-ids^int/ord^fun ) -> elt-alg^boo, elt-ord^fun, elt-ord^fun
Idempotents ( elt-ids^int/ord^num, elt-ids^int/ord^num ) -> elt-alg^boo, elt-ord^num, elt-ord^num
Identity ( dif/fld^fun ) -> elt-dif/fld^fun
Identity ( dvs/fld^fun ) -> elt-dvs/fld^fun
Identity ( grp^abl ) -> elt-grp^abl
Identity ( rng ) -> elt-rng
ids
ids/ord^num
if
Ignore ( nof() )
IharaBound ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
IharaBound ( fld^fun ) -> elt-ord^rat
IharaBound ( fld^fun, elt-ord^rat ) -> elt-ord^rat
Ilog ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Ilog2 ( elt-fld^rea ) -> elt-ord^rat
Ilog2 ( elt-ord^rat ) -> elt-ord^rat
Im ( elt-fld^com ) -> elt-fld^rea
Image ( any, map() ) -> any
Imaginary ( elt-fld^com ) -> elt-fld^rea
any
in
any -> elt-alg^boo
any
in
dif/fld^fun -> elt-alg^boo
any
in
dvs/fld^fun -> elt-alg^boo
any
in
ids/ord^num -> elt-alg^boo
any
in
list -> elt-alg^boo
any
in
mdl^ded -> elt-alg^boo
any
in
pls/fld^fun -> elt-alg^boo
any
in
record -> elt-alg^boo
any
in
seq() -> elt-alg^boo
elt-alg^pol
in
alg^pol -> elt-alg^boo
elt-fld^fra
in
elt-ids^fra/ord^num -> elt-alg^boo
elt-grp^abl
in
grp^abl -> elt-alg^boo
elt-mdl
in
mdl -> elt-alg^boo
elt-mdl^mat
in
mdl^mat -> elt-alg^boo
elt-mdl^vec
in
mdl^vec -> elt-alg^boo
elt-ord^num
in
elt-ids^fra/ord^num -> elt-alg^boo
elt-ord^num
in
elt-ids^int/ord^num -> elt-alg^boo
elt-rng
in
elt-ids^int/ord^fun -> elt-alg^boo
elt-rng
in
fld^fun -> elt-alg^boo
elt-rng
in
ord^fun -> elt-alg^boo
string
in
string -> elt-alg^boo
Include ( mdl^vec, elt-mdl^vec ) -> mdl^vec, elt-alg^boo
Include ( seq(), any ) -> seq()
Include_ ( mdl^vec, elt-mdl^vec )
Include_ ( mdl^vec, elt-mdl^vec, )
Include_ ( seq(), any )
IndefiniteLLLGram ( elt-alg^mat ) -> elt-alg^mat, elt-alg^mat
IndependentUnits ( fld^num ) -> grp^abl, map()
IndependentUnits ( ord^num ) -> grp^abl, map()
Index ( elt-ord^num ) -> elt-ord^rat
Index ( grp^abl, grp^abl ) -> elt-ord^rat
Index ( ord^fun, ord^fun ) -> any
Index ( ord^num, elt-ids^int/ord^num ) -> elt-ord^rat
Index ( ord^num, ord^num ) -> any
Index ( seq(), any ) -> elt-ord^rat
Index ( seq(), any, elt-ord^rat ) -> elt-ord^rat
Index ( string, string ) -> elt-ord^rat
IndexFormEquation ( ord^num, elt-ord^rat ) -> seq()
IndexOfSpeciality ( elt-dvs/fld^fun ) -> elt-ord^rat
InertiaDegree ( elt-ids^int/ord^fun ) -> elt-ord^rat
InertiaDegree ( elt-ids^int/ord^num ) -> elt-ord^rat
InertiaDegree ( elt-pls/fld^fun ) -> elt-ord^rat
InertiaDegree ( elt-pls/fld^num ) -> elt-ord^rat
InertiaDegree ( fld^pad ) -> elt-ord^rat
InertiaDegree ( fld^pad, fld^pad ) -> elt-ord^rat
InertiaDegree ( ord^pad ) -> elt-ord^rat
InertiaDegree ( ord^pad, ord^pad ) -> elt-ord^rat
InertiaDegree ( res^pad ) -> elt-ord^rat
InertiaDegree ( res^pad, res^pad ) -> elt-ord^rat
Infinity -> elt-ord^inf
INFTY -> elt-ord^inf
Inline Help
InnerFaces ( newtgon ) -> seq()
InnerProduct ( elt-mdl, elt-mdl ) -> elt-rng
InnerProduct ( elt-mdl^mat, elt-mdl^mat ) -> elt-rng
InnerProduct ( elt-mdl^vec, elt-mdl^vec ) -> elt-rng
InnerVertices ( newtgon ) -> seq()
Insert ( list, any, elt-ord^rat ) -> list
Insert ( seq(), any, elt-ord^rat ) -> seq()
InsertBlock ( elt-alg^mat, elt-alg^mat, elt-ord^rat, elt-ord^rat ) -> elt-alg^mat
InsertBlock_ ( elt-alg^mat, elt-alg^mat, elt-ord^rat, elt-ord^rat )
Insert_ ( list, any, elt-ord^rat )
Insert_ ( seq(), any, elt-ord^rat )
Inside KASH3
InstallConstants
InstallDocumentation ( record ) -> elt-alg^boo
InstallMethod ( record, func )
int
IntegerRing -> ord^rat
IntegerRing ( elt-ord^rat ) -> res^rat
IntegerRing ( fld^fra ) -> ord^num
IntegerRing ( fld^pad ) -> ord^pad
IntegerRing ( fld^rat ) -> ord^rat
IntegerRing ( rng ) -> rng
IntegerRing ( seq() ) -> res^rat
Integers -> ord^rat
Integers ( elt-ord^rat ) -> res^rat
Integers ( fld^fra ) -> ord^num
Integers ( fld^pad ) -> ord^pad
Integers ( fld^rat ) -> ord^rat
Integers ( rng ) -> rng
Integers ( seq() ) -> res^rat
Integers and Rationals
IntegerToSequence ( elt-ord^rat, elt-ord^rat ) -> seq()
IntegerToSequence ( elt-ord^rat, elt-ord^rat, elt-ord^rat ) -> seq()
IntegerToString ( elt-ord^rat ) -> string
IntegerToString ( elt-ord^rat, elt-ord^rat ) -> string
Integral ( elt-alg^pol ) -> elt-alg^pol
Integral ( elt-rng^ser ) -> elt-rng^ser
IntegralBasis ( fld^fra ) -> seq()
IntegralBasis ( fld^fra, rng ) -> seq()
IntegralBasis ( fld^rat ) -> seq()
IntegralClosure ( rng, fld^fun ) -> ord^fun
IntegralPoints ( elt-ord^rat ) -> list
IntegralPoints ( elt-ord^rat, elt-ord^rat ) -> list
IntegralSplit ( elt-fld^fun, ord^fun ) -> elt-ord^fun, elt-rng
IntegralSplit ( elt-ids^fra/ord^num ) -> elt-ids^int/ord^num, elt-rng
IntegralSplit ( elt-ids^int/ord^fun ) -> elt-ids^int/ord^fun, elt-rng
IntegralSplit ( elt-ord^fun, ord^fun ) -> elt-ord^fun, elt-rng
InternalChtrTableIPK ( fld^fin, seq(), elt-mdl^vec, elt-mdl^vec ) -> elt-fld^fin
InternalChtrTableIPRK ( fld^fin, elt-mdl^vec, elt-mdl^vec, seq(), seq() ) -> elt-fld^fin
InternalChtrTableIPZ ( fld^fin, seq(), elt-mdl^vec, elt-mdl^vec ) -> elt-ord^rat
InternalChtrTablePermute ( fld^fin, elt-mdl^vec, seq(elt-ord^rat) ) -> elt-mdl^vec
InternalCMSearch ( seq(elt-ord^rat), elt-ord^rat, elt-ord^rat ) -> seq()
InternalFactorizationTableInit ( elt-ord^rat )
InternalFldAlgEltCon ( elt-fld^fra ) -> elt-fld^fra
InternalFldAlgEltCon ( elt-fld^fra, elt-ord^rat ) -> elt-fld^fra
InternalFldOut ( ord^num )
InternalGaloisRoots ( ord^num, elt-ord^rat ) -> any
InternalHardConjCountGet -> elt-ord^rat
InternalHardConjCountSet ( elt-ord^rat )
InternalInduce ( mdl^vec, seq(), seq(), seq(), seq(), elt-mdl^vec ) -> elt-mdl^vec
InternalInfinitePlaceCreate ( fld^num, elt-ord^rat ) -> elt-pls/fld^num
InternalInfinitePlaceCreate ( fld^num, seq(elt-ord^rat) ) -> elt-pls/fld^num
InternalLiftEmbedding ( elt-ord^fun, elt-alg^pol, elt-alg^pol, elt-alg^pol ) -> elt-alg^boo, elt-ord^fun
InternalNorm ( elt-ord^num, elt-ord^rat ) -> any
InternalNormEquation ( fld^fra, elt-fld^fra ) -> elt-alg^boo, seq()
InternalNormEquation ( fld^fra, elt-ord^rat ) -> elt-alg^boo, seq()
InternalNormEquation ( ord^num, elt-ord^num ) -> elt-alg^boo, seq()
InternalNormEquation ( ord^num, elt-ord^rat ) -> elt-alg^boo, seq()
InternalOrderPAdicHeap ( ord^num, elt-ord^rat )
InternalPolyNewtonLift ( elt-alg^pol, elt-fld^fra, elt-ord^rat ) -> elt-alg^pol
InternalQISearch ( elt-alg^mat, elt-alg^mat, seq(elt-ord^rat), elt-ord^rat, elt-ord^rat ) -> seq()
InternalRelLLL ( elt-alg^mat ) -> elt-alg^mat, elt-alg^mat
InternalRelLLLGram ( elt-alg^mat ) -> elt-alg^mat
Interpolation ( seq(elt-rng), seq(elt-rng) ) -> elt-alg^pol
Intersection ( dry, list ) -> dry
Intersection ( set, list ) -> set
IntersectionCardinality ( seq(), seq() ) -> elt-ord^rat
Intersection_ ( dry, list )
Intersection_ ( elt-alg^pol, elt-alg^pol )
Intersection_ ( elt-ord^rat, elt-ord^rat )
Intersection_ ( grp^abl, grp^abl )
Intersection_ ( mdl^vec, mdl^vec )
Intersection_ ( seq(), seq() )
Intersection_ ( set, list )
Introduction to KASH3
Introduction to Number Fields
IntRoot ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
Intseq ( elt-ord^rat, elt-ord^rat ) -> seq()
Intseq ( elt-ord^rat, elt-ord^rat, elt-ord^rat ) -> seq()
InvariantBasis ( grp^abl ) -> seq()
InvariantFactors ( elt-alg^mat ) -> seq()
InvariantFactors ( grp^abl ) -> seq()
InvariantRepresentation ( grp^abl ) -> grp^abl
Invariants ( grp^abl ) -> seq()
Inverse ( map() ) -> map()
InverseMod ( elt-alg^pol, elt-alg^pol ) -> elt-alg^pol
InverseMod ( elt-ord^fun, elt-ids^int/ord^fun ) -> elt-ord^fun
InverseMod ( elt-ord^fun, elt-rng ) -> elt-ord^fun
InverseMod ( elt-ord^num, elt-ids^int/ord^num ) -> elt-ord^num
InverseMod ( elt-ord^num, elt-ord^rat ) -> elt-ord^num
InverseMod ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
InverseRoot ( elt-fld^pad, elt-fld^pad, elt-ord^rat ) -> elt-fld^pad
InverseRoot ( elt-fld^pad, elt-ord^rat ) -> elt-fld^pad
InverseRoot ( elt-ord^pad, elt-ord^pad, elt-ord^rat ) -> elt-ord^pad
InverseRoot ( elt-ord^pad, elt-ord^rat ) -> elt-ord^pad
InverseRoot ( elt-res^pad, elt-ord^rat ) -> elt-res^pad
InverseRoot ( elt-res^pad, elt-res^pad, elt-ord^rat ) -> elt-res^pad
InverseSqrt ( elt-fld^pad ) -> elt-fld^pad
InverseSqrt ( elt-fld^pad, elt-fld^pad ) -> elt-fld^pad
InverseSqrt ( elt-ord^pad ) -> elt-ord^pad
InverseSqrt ( elt-ord^pad, elt-ord^pad ) -> elt-ord^pad
InverseSqrt ( elt-res^pad ) -> elt-res^pad
InverseSqrt ( elt-res^pad, elt-res^pad ) -> elt-res^pad
InverseSquareRoot ( elt-fld^pad ) -> elt-fld^pad
InverseSquareRoot ( elt-fld^pad, elt-fld^pad ) -> elt-fld^pad
InverseSquareRoot ( elt-ord^pad ) -> elt-ord^pad
InverseSquareRoot ( elt-ord^pad, elt-ord^pad ) -> elt-ord^pad
InverseSquareRoot ( elt-res^pad ) -> elt-res^pad
InverseSquareRoot ( elt-res^pad, elt-res^pad ) -> elt-res^pad
Iroot ( elt-ord^rat, elt-ord^rat ) -> elt-ord^rat
IrreduciblePolynomial ( fld^fin, elt-ord^rat ) -> elt-alg^pol
Is ( type, type )
IsAbelian ( fld^fra ) -> elt-alg^boo
IsAbelian ( grp^abl ) -> elt-alg^boo
IsAModule ( mdl ) -> elt-alg^boo
IsAssociative ( alg^mat ) -> elt-alg^boo
IsBijective ( elt-mdl^mat ) -> elt-alg^boo
IsBool ( any ) -> elt-alg^boo
IsBound ( any ) -> elt-alg^boo
IsBoundary ( newtgon, tup() ) -> elt-alg^boo
IsCanonical ( elt-dvs/fld^fun ) -> elt-alg^boo, elt-dif/fld^fun
IsCentral ( grp^abl, grp^abl ) -> elt-alg^boo
IsChar ( any ) -> elt-alg^boo
IsCoercible ( any, any ) -> elt-alg^boo, any
IsCommutative ( rng ) -> elt-alg^boo
IsCompatible ( any, any ) -> elt-alg^boo
IsConjugate ( grp^abl, elt-grp^abl, elt-grp^abl ) -> elt-alg^boo, elt-grp^abl
IsConjugate ( grp^abl, grp^abl, grp^abl ) -> elt-alg^boo, elt-grp^abl
IsConsistent ( elt-alg^mat, elt-alg^mat ) -> elt-alg^boo, elt-alg^mat, elt-alg^mat
IsConsistent ( elt-alg^mat, elt-mdl ) -> elt-alg^boo, elt-mdl, mdl
IsConsistent ( elt-alg^mat, elt-mdl^mat ) -> elt-alg^boo, elt-mdl^mat, mdl^mat
IsConsistent ( elt-alg^mat, elt-mdl^vec ) -> elt-alg^boo, elt-mdl^vec, mdl^vec
IsConsistent ( elt-alg^mat, seq(elt-mdl) ) -> elt-alg^boo, seq(), mdl
IsConsistent ( elt-alg^mat, seq(elt-mdl^vec) ) -> elt-alg^boo, seq(), mdl^vec
IsConsistent ( elt-mdl^mat, elt-mdl ) -> elt-alg^boo, elt-mdl, mdl
IsConsistent ( elt-mdl^mat, elt-mdl^mat ) -> elt-alg^boo, elt-mdl^mat, mdl^mat
IsConsistent ( elt-mdl^mat, elt-mdl^vec ) -> elt-alg^boo, elt-mdl^vec, mdl^vec
IsConsistent ( elt-mdl^mat, seq(elt-mdl) ) -> elt-alg^boo, seq(), mdl
IsConsistent ( elt-mdl^mat, seq(elt-mdl^vec) ) -> elt-alg^boo, seq(), mdl^vec
IsConway ( fld^fin ) -> elt-alg^boo
IsCyclic ( grp^abl ) -> elt-alg^boo
IsDefined ( seq(), elt-ord^rat ) -> elt-alg^boo
IsDefined ( seq(), seq(elt-ord^rat) ) -> elt-alg^boo
IsDense ( list ) -> elt-alg^boo
IsDiagonal ( elt-alg^mat ) -> elt-alg^boo
IsDiscriminant ( elt-ord^rat ) -> elt-alg^boo
IsDisjoint ( seq(), seq() ) -> elt-alg^boo
IsDivisibleBy ( elt-ord^rat, elt-ord^rat ) -> elt-alg^boo, elt-ord^rat
IsDivisibleBy ( elt-rng, elt-rng ) -> elt-alg^boo, elt-rng
IsDivisionRing ( rng ) -> elt-alg^boo
IsDry ( any ) -> elt-alg^boo
IsEffective ( elt-dvs/fld^fun ) -> elt-alg^boo
IsEmpty ( seq() ) -> elt-alg^boo
IsEof ( string ) -> elt-alg^boo
IsEquationOrder ( ord^fun ) -> elt-alg^boo
IsEquationOrder ( ord^num ) -> elt-alg^boo
IsEven ( elt-ord^rat ) -> elt-alg^boo
IsEven ( seq() ) -> elt-alg^boo
IsExact ( elt-dif/fld^fun ) -> elt-alg^boo, elt-fld^fun
IsExactlyDivisible ( elt-fld^pad, elt-fld^pad ) -> elt-alg^boo, elt-fld^pad
IsExactlyDivisible ( elt-ord^pad, elt-ord^pad ) -> elt-alg^boo, elt-ord^pad
IsExactlyDivisible ( elt-res^pad, elt-res^pad ) -> elt-alg^boo, elt-res^pad
IsExceptionalUnit ( elt-ord^num ) -> elt-alg^boo
IsFace ( newtgon, tup() ) -> elt-alg^boo, newtface
IsFactorial ( elt-ord^rat ) -> elt-alg^boo, elt-ord^rat
IsField ( rng ) -> elt-alg^boo
IsFinite ( elt-grp^abl ) -> elt-alg^boo, elt-ord^rat
IsFinite ( elt-ord^inf ) -> elt-alg^boo
IsFinite ( elt-ord^rat ) -> elt-alg^boo
IsFinite ( elt-pls/fld^fun ) -> elt-alg^boo
IsFinite ( elt-pls/fld^num ) -> elt-alg^boo, elt-ids^int/ord^num
IsFinite ( grp^abl ) -> elt-alg^boo, elt-ord^rat
IsFinite ( mdl^mat ) -> elt-alg^boo, elt-ord^rat
IsFinite ( mdl^vec ) -> elt-alg^boo, elt-ord^rat
IsFinite ( rng ) -> elt-alg^boo, elt-ord^rat
IsFiniteOrder ( ord^fun ) -> elt-alg^boo
IsFundamental ( elt-ord^rat ) -> elt-alg^boo
IsFundamentalDiscriminant ( elt-ord^rat ) -> elt-alg^boo
IsGlobal ( fld^fun ) -> elt-alg^boo
IsId ( elt-grp^abl ) -> elt-alg^boo
IsIdempotent ( elt-alg^mat ) -> elt-alg^boo
IsIdempotent ( elt-rng ) -> elt-alg^boo
IsIdentical ( any, any ) -> elt-alg^boo
IsIdentity ( elt-grp^abl ) -> elt-alg^boo
IsIndependent ( seq(elt-mdl) ) -> elt-alg^boo
IsIndependent ( seq(elt-mdl^mat) ) -> elt-alg^boo
IsIndependent ( seq(elt-mdl^vec) ) -> elt-alg^boo
IsInfinite ( elt-pls/fld^num ) -> elt-alg^boo, elt-ord^rat
IsInjective ( elt-mdl^mat ) -> elt-alg^boo
IsInt ( any ) -> elt-alg^boo
IsIntegral ( elt-fld^com ) -> elt-alg^boo
IsIntegral ( elt-fld^fra ) -> elt-alg^boo
IsIntegral ( elt-fld^pad ) -> elt-alg^boo
IsIntegral ( elt-fld^rat ) -> elt-alg^boo
IsIntegral ( elt-fld^rea ) -> elt-alg^boo
IsIntegral ( elt-ids^fra/ord^num ) -> elt-alg^boo
IsIntegral ( elt-ids^int/ord^fun ) -> elt-alg^boo
IsIntegral ( elt-ord^num ) -> elt-alg^boo
IsIntegral ( elt-ord^pad ) -> elt-alg^boo
IsIntegral ( elt-ord^rat ) -> elt-alg^boo
IsIntegral ( elt-res^pad ) -> elt-alg^boo
IsInterior ( newtgon, tup() ) -> elt-alg^boo
IsInvertible ( elt-ord^pow ) -> elt-alg^boo
IsInvertible ( elt-res^pow ) -> elt-alg^boo
IsInvertible ( elt-rng ) -> elt-alg^boo, elt-rng
IsIrreducible ( elt-alg^pol ) -> elt-alg^boo
IsIrreducible ( elt-ord^rat ) -> elt-alg^boo
IsIrreducible ( elt-rng ) -> elt-alg^boo
IsIrreducible ( mdl ) -> elt-alg^boo, mdl, mdl
IsIsomorphic ( fld^fra, fld^fra ) -> elt-alg^boo, map()
IsIsomorphic ( grp^abl, grp^abl ) -> elt-alg^boo, map()
IsIsomorphic ( mdl, mdl ) -> elt-alg^boo, elt-alg^mat
IsList ( any ) -> elt-alg^boo
IsMatching ( string, string ) -> elt-alg^boo
IsMaximal ( alg^pol ) -> elt-alg^boo
IsMaximal ( grp^abl, grp^abl ) -> elt-alg^boo
IsMaximal ( ord^fun ) -> elt-alg^boo
IsMaximal ( ord^num ) -> elt-alg^boo
IsMinusOne ( elt-alg^mat ) -> elt-alg^boo
IsMinusOne ( elt-alg^pol ) -> elt-alg^boo
IsMinusOne ( elt-fld^com ) -> elt-alg^boo
IsMinusOne ( elt-fld^fin ) -> elt-alg^boo
IsMinusOne ( elt-fld^fra ) -> elt-alg^boo
IsMinusOne ( elt-fld^fun ) -> elt-alg^boo
IsMinusOne ( elt-fld^pad ) -> elt-alg^boo
IsMinusOne ( elt-fld^rat ) -> elt-alg^boo
IsMinusOne ( elt-fld^rea ) -> elt-alg^boo
IsMinusOne ( elt-ord^fun ) -> elt-alg^boo
IsMinusOne ( elt-ord^num ) -> elt-alg^boo
IsMinusOne ( elt-ord^pad ) -> elt-alg^boo
IsMinusOne ( elt-ord^rat ) -> elt-alg^boo
IsMinusOne ( elt-res^num ) -> elt-alg^boo
IsMinusOne ( elt-res^pad ) -> elt-alg^boo
IsMinusOne ( elt-res^pol ) -> elt-alg^boo
IsMinusOne ( elt-res^rat ) -> elt-alg^boo
IsMinusOne ( elt-rng ) -> elt-alg^boo
IsMinusOne ( elt-rng^ser ) -> elt-alg^boo
IsMonic ( elt-alg^pol/ord^pow ) -> elt-alg^boo
IsMonic ( elt-alg^pol/res^pow ) -> elt-alg^boo
IsNegativeDefinite ( elt-alg^mat ) -> elt-alg^boo
IsNegativeSemiDefinite ( elt-alg^mat ) -> elt-alg^boo
IsNilpotent ( elt-alg^mat ) -> elt-alg^boo, elt-ord^rat
IsNilpotent ( elt-res^pad ) -> elt-alg^boo, elt-ord^rat
IsNilpotent ( elt-res^rat ) -> elt-alg^boo, elt-ord^rat
IsNilpotent ( elt-rng ) -> elt-alg^boo, elt-ord^rat
IsNilpotent ( grp^abl ) -> elt-alg^boo
IsNormal ( elt-fld^fin ) -> elt-alg^boo
IsNormal ( elt-fld^fin, fld^fin ) -> elt-alg^boo
IsNormal ( fld^fra ) -> elt-alg^boo
IsNormal ( grp^abl, grp^abl ) -> elt-alg^boo
IsNull ( seq() ) -> elt-alg^boo
IsOdd ( elt-ord^rat ) -> elt-alg^boo
IsOne ( elt-alg^mat ) -> elt-alg^boo
IsOne ( elt-alg^pol ) -> elt-alg^boo
IsOne ( elt-fld^com ) -> elt-alg^boo
IsOne ( elt-fld^fin ) -> elt-alg^boo
IsOne ( elt-fld^fra ) -> elt-alg^boo
IsOne ( elt-fld^fun ) -> elt-alg^boo
IsOne ( elt-fld^pad ) -> elt-alg^boo
IsOne ( elt-fld^rat ) -> elt-alg^boo
IsOne ( elt-fld^rea ) -> elt-alg^boo
IsOne ( elt-ids^int/ord^fun ) -> elt-alg^boo
IsOne ( elt-ord^fun ) -> elt-alg^boo
IsOne ( elt-ord^num ) -> elt-alg^boo
IsOne ( elt-ord^pad ) -> elt-alg^boo
IsOne ( elt-ord^rat ) -> elt-alg^boo
IsOne ( elt-res^num ) -> elt-alg^boo
IsOne ( elt-res^pad ) -> elt-alg^boo
IsOne ( elt-res^pol ) -> elt-alg^boo
IsOne ( elt-res^rat ) -> elt-alg^boo
IsOne ( elt-rng ) -> elt-alg^boo
IsOne ( elt-rng^ser ) -> elt-alg^boo
IsOne ( seq() ) -> elt-alg^boo
IsPartialRoot ( elt-alg^pol, elt-rng^ser ) -> elt-alg^boo
IsPerm ( any ) -> elt-alg^boo
IsPID ( rng ) -> elt-alg^boo
IsPIR ( rng ) -> elt-alg^boo
IsPoint ( newtgon, tup() ) -> elt-alg^boo
IsPositive ( elt-dvs/fld^fun ) -> elt-alg^boo
IsPositiveDefinite ( elt-alg^mat ) -> elt-alg^boo
IsPositiveSemiDefinite ( elt-alg^mat ) -> elt-alg^boo
IsPower ( elt-fld^fin, elt-ord^rat ) -> elt-alg^boo, elt-fld^fin
IsPower ( elt-fld^fra, elt-ord^rat ) -> elt-alg^boo, elt-fld^fra
IsPower ( elt-fld^pad, elt-ord^rat ) -> elt-alg^boo, elt-fld^pad
IsPower ( elt-ids^fra/ord^num, elt-ord^rat ) -> elt-alg^boo, elt-ids^fra/ord^num
IsPower ( elt-ids^int/ord^fun, elt-ord^rat ) -> elt-alg^boo, elt-ids^int/ord^fun
IsPower ( elt-ord^num, elt-ord^rat ) -> elt-alg^boo, elt-ord^num
IsPower ( elt-ord^pad, elt-ord^rat ) -> elt-alg^boo, elt-ord^pad
IsPower ( elt-ord^rat ) -> elt-alg^boo, elt-ord^rat, elt-ord^rat
IsPower ( elt-ord^rat, elt-ord^rat ) -> elt-alg^boo, elt-ord^rat
IsPower ( elt-res^pad, elt-ord^rat ) -> elt-alg^boo, elt-res^pad
IsPower ( elt-rng, elt-ord^rat ) -> elt-alg^boo, elt-rng
IsPower ( seq() ) -> elt-alg^boo, seq(), elt-ord^rat
IsPower ( seq(), elt-ord^rat ) -> elt-alg^boo, seq()
IsPrime ( alg^pol ) -> elt-alg^boo
IsPrime ( elt-alg^pol ) -> elt-alg^boo
IsPrime ( elt-ids^fra/ord^num ) -> elt-alg^boo
IsPrime ( elt-ids^int/ord^fun ) -> elt-alg^boo
IsPrime ( elt-ids^int/ord^num ) -> elt-alg^boo, elt-ids^int/ord^num
IsPrime ( elt-ord^rat ) -> elt-alg^boo
IsPrime ( elt-rng ) -> elt-alg^boo
IsPrime ( ord^rat ) -> elt-alg^boo
IsPrime ( seq() ) -> elt-alg^boo
IsPrimePower ( elt-ord^rat ) -> elt-alg^boo, elt-ord^rat, elt-ord^rat
IsPrimePower ( seq() ) -> elt-alg^boo
IsPrimitive ( elt-alg^pol ) -> elt-alg^boo
IsPrimitive ( elt-alg^pol/ord^pow ) -> elt-alg^boo
IsPrimitive ( elt-fld^fin ) -> elt-alg^boo
IsPrimitive ( elt-fld^fra ) -> elt-alg^boo
IsPrimitive ( elt-ord^num ) -> elt-alg^boo
IsPrimitive ( elt-ord^rat, elt-ord^rat ) -> elt-alg^boo
IsPrimitive ( elt-res^rat ) -> elt-alg^boo
IsPrincipal ( elt-dvs/fld^fun ) -> elt-alg^boo, elt-fld^fun
IsPrincipal ( elt-ids^fra/ord^num ) -> elt-alg^boo, elt-fld^fra
IsPrincipal ( ord^rat ) -> elt-alg^boo, elt-ord^rat
IsPrincipal ( rng ) -> elt-alg^boo
IsPrincipalIdealDomain ( rng ) -> elt-alg^boo
IsPrincipalIdealRing ( rng ) -> elt-alg^boo
IsProbablePrime ( elt-ord^rat ) -> elt-alg^boo
IsProbablyPrime ( elt-ord^rat ) -> elt-alg^boo
Isqrt ( elt-ord^rat ) -> elt-ord^rat
IsRange ( any ) -> elt-alg^boo
IsRationalFunctionField ( fld^fun ) -> elt-alg^boo
IsReal ( elt-fld^com ) -> elt-alg^boo
IsRec ( any ) -> elt-alg^boo
IsRegular ( elt-alg^mat ) -> elt-alg^boo
IsRegular ( elt-res^pad ) -> elt-alg^boo
IsRegular ( elt-res^rat ) -> elt-alg^boo
IsRegular ( elt-rng ) -> elt-alg^boo
IsScalar ( elt-alg^mat ) -> elt-alg^boo
IsSeparable ( elt-alg^pol ) -> elt-alg^boo
IsSeparating ( elt-fld^fun ) -> elt-alg^boo
IsSet ( any ) -> elt-alg^boo
IsSimilar ( elt-alg^mat, elt-alg^mat ) -> elt-alg^boo, elt-alg^mat
IsSimple ( alg^mat ) -> elt-alg^boo
IsSimple ( fld^fra ) -> elt-alg^boo
IsSimple ( grp^abl ) -> elt-alg^boo
IsSimple ( ord^fun ) -> elt-alg^boo
IsSimple ( ord^num ) -> elt-alg^boo
IsSinglePrecision ( elt-ord^rat ) -> elt-alg^boo
IsSpecial ( elt-dvs/fld^fun ) -> elt-alg^boo
IsSquare ( elt-fld^fin ) -> elt-alg^boo, elt-fld^fin
IsSquare ( elt-fld^fra ) -> elt-alg^boo, elt-fld^fra
IsSquare ( elt-fld^pad ) -> elt-alg^boo, elt-fld^pad
IsSquare ( elt-fld^rat ) -> elt-alg^boo, elt-fld^rat
IsSquare ( elt-ids^fra/ord^num ) -> elt-alg^boo, elt-ids^fra/ord^num
IsSquare ( elt-ids^int/ord^fun ) -> elt-alg^boo, elt-ids^int/ord^fun
IsSquare ( elt-ord^num ) -> elt-alg^boo, elt-ord^num
IsSquare ( elt-ord^pad ) -> elt-alg^boo, elt-ord^pad
IsSquare ( elt-ord^rat ) -> elt-alg^boo, elt-ord^rat
IsSquare ( elt-res^pad ) -> elt-alg^boo, elt-res^pad
IsSquare ( elt-res^rat ) -> elt-alg^boo, elt-res^rat
IsSquare ( elt-rng ) -> elt-alg^boo, elt-rng
IsSquare ( seq() ) -> elt-alg^boo, seq()
IsSquarefree ( elt-ord^rat ) -> elt-alg^boo
IsSquarefree ( seq() ) -> elt-alg^boo
IsString ( any ) -> elt-alg^boo
IsSubfield ( fld^fra, fld^fra ) -> elt-alg^boo, map()
IsSubmodule ( mdl^ded, mdl^ded ) -> elt-alg^boo, map()
IsSubsequence ( seq(), seq() ) -> elt-alg^boo
IsSubset ( alg^pol, alg^pol ) -> elt-alg^boo
IsSubset ( fld^com, fld^rat ) -> elt-alg^boo
IsSubset ( fld^com, fld^rea ) -> elt-alg^boo
IsSubset ( fld^com, ord^rat ) -> elt-alg^boo
IsSubset ( fld^fin, fld^fin ) -> elt-alg^boo
IsSubset ( fld^rat, fld^com ) -> elt-alg^boo
IsSubset ( fld^rat, fld^rea ) -> elt-alg^boo
IsSubset ( fld^rat, ord^rat ) -> elt-alg^boo
IsSubset ( fld^rea, fld^rat ) -> elt-alg^boo
IsSubset ( fld^rea, ord^rat ) -> elt-alg^boo
IsSubset ( grp^abl, grp^abl ) -> elt-alg^boo
IsSubset ( mdl, mdl ) -> elt-alg^boo
IsSubset ( mdl^ded, mdl^ded ) -> elt-alg^boo
IsSubset ( mdl^mat, mdl^mat ) -> elt-alg^boo
IsSubset ( mdl^vec, mdl^vec ) -> elt-alg^boo
IsSubset ( ord^num, ord^num ) -> elt-alg^boo
IsSubset ( ord^rat, fld^com ) -> elt-alg^boo
IsSubset ( ord^rat, fld^rat ) -> elt-alg^boo
IsSubset ( ord^rat, fld^rea ) -> elt-alg^boo
IsSubset ( ord^rat, ord^rat ) -> elt-alg^boo
IsSubset ( seq(), any ) -> elt-alg^boo
IsSubset ( seq(), seq() ) -> elt-alg^boo
IsSurjective ( elt-mdl^mat ) -> elt-alg^boo
IsTorsionUnit ( elt-ord^num ) -> elt-alg^boo
IsUnipotent ( elt-alg^mat ) -> elt-alg^boo, elt-ord^rat
IsUnit ( elt-alg^pol ) -> elt-alg^boo
IsUnit ( elt-fld^com ) -> elt-alg^boo
IsUnit ( elt-fld^fin ) -> elt-alg^boo
IsUnit ( elt-fld^fra ) -> elt-alg^boo
IsUnit ( elt-fld^fun ) -> elt-alg^boo
IsUnit ( elt-fld^pad ) -> elt-alg^boo
IsUnit ( elt-fld^rat ) -> elt-alg^boo
IsUnit ( elt-fld^rea ) -> elt-alg^boo
IsUnit ( elt-ord^fun ) -> elt-alg^boo
IsUnit ( elt-ord^num ) -> elt-alg^boo
IsUnit ( elt-ord^pad ) -> elt-alg^boo
IsUnit ( elt-ord^pow ) -> elt-alg^boo
IsUnit ( elt-ord^rat ) -> elt-alg^boo
IsUnit ( elt-res^num ) -> elt-alg^boo
IsUnit ( elt-res^pad ) -> elt-alg^boo
IsUnit ( elt-res^pol ) -> elt-alg^boo
IsUnit ( elt-res^pow ) -> elt-alg^boo
IsUnit ( elt-res^rat ) -> elt-alg^boo
IsUnit ( elt-rng ) -> elt-alg^boo
IsUnit ( seq() ) -> elt-alg^boo
IsVector ( any ) -> elt-alg^boo
IsZero ( elt-alg^mat ) -> elt-alg^boo
IsZero ( elt-alg^pol ) -> elt-alg^boo
IsZero ( elt-dif/fld^fun ) -> elt-alg^boo
IsZero ( elt-dvs/fld^fun ) -> elt-alg^boo
IsZero ( elt-fld^com ) -> elt-alg^boo
IsZero ( elt-fld^fin ) -> elt-alg^boo
IsZero ( elt-fld^fra ) -> elt-alg^boo
IsZero ( elt-fld^fun ) -> elt-alg^boo
IsZero ( elt-fld^pad ) -> elt-alg^boo
IsZero ( elt-fld^rat ) -> elt-alg^boo
IsZero ( elt-fld^rea ) -> elt-alg^boo
IsZero ( elt-ids^fra/ord^num ) -> elt-alg^boo
IsZero ( elt-ids^int/ord^fun ) -> elt-alg^boo
IsZero ( elt-ord^fun ) -> elt-alg^boo
IsZero ( elt-ord^num ) -> elt-alg^boo
IsZero ( elt-ord^pad ) -> elt-alg^boo
IsZero ( elt-ord^rat ) -> elt-alg^boo
IsZero ( elt-res^num ) -> elt-alg^boo
IsZero ( elt-res^pad ) -> elt-alg^boo
IsZero ( elt-res^pol ) -> elt-alg^boo
IsZero ( elt-res^rat ) -> elt-alg^boo
IsZero ( elt-rng ) -> elt-alg^boo
IsZero ( elt-rng^ser ) -> elt-alg^boo
IsZero ( map() ) -> elt-alg^boo
IsZero ( mdl ) -> elt-alg^boo
IsZeroDivisor ( elt-alg^mat ) -> elt-alg^boo
IsZeroDivisor ( elt-res^pad ) -> elt-alg^boo
IsZeroDivisor ( elt-res^rat ) -> elt-alg^boo
IsZeroDivisor ( elt-rng ) -> elt-alg^boo
Iterated ( list, func ) -> any
Built: Mon Nov 14 21:15:56 UTC 2005 on mack
The KANT Group