> |
Maple interface to the QaoS databases
by Sebastian Freundt and Sebastian Pauli
> |
# Maple interface to the QaoS databases
module Qaos( )
# QaosNumberField(query::string [,limit::integer])::list(qaosnumberfield)
# QaosNumberField([limit::integer])::list(qaosnumberfield)
#
# Searches the KANT number field database in Berlin. Returns at most
# 'limit' matches. The string 'query' is made up of terms of the form
# invariant=value, where invariant is one of:
#
# degree or deg,
# classnumber or classnum or class,
# real signature or sig-real or rsig,
# imaginary signature or sig-im or isig,
# discriminant or disc,
# regulator or reg, or
# galoisgroup or galgrp.
#
# If value is a number then >, <, >=,, <= or <> can be used instead of =.
# You can omit the relation if you want it to be =. The Galois group may be
# enclosed in single quotes, e.g. galoisgroup='S5' or galgrp is 's5'.
# Several terms are implied to be connected by AND, e.g. degree=3 cls 2
# |disc| <= 9876.
#
# Called without an argument NumberFieldQuery returns more fields matching
# the previous search query.
#
# The procedure DefiningPolynomial returns a defining polynomial of a
# field. The invariants of the returned fields can be accessed withh the
# procedure: ClassGroup, ClassNumber, Degree, Discriminant, GaloisGroup,
# Regulator, Signature
#
# Properties of the Galois group can be obtained with the procedures:
# IsAbelian, IsMetaAbelian, IsSimple, IsSolvable, IsSuperSolvable,
# IsCyclic, IsPrimitive, IsNilpotent
#
# You must have 'curl' installed and properly configured in order to use
# the database.
QaosNumberField( )
# The defining polynomial of a number field from the KANT database.
DefiningPolynomial( q::qaosnumberfield )
# The regulator of a number field from the KANT database.
Regulator( q::qaosnumberfield )
# A name of the Galois group of a number field from the KANT database.
GaloisGroup( q::qaosnumberfield )
# The signature [r_1,r_2] of a number field from the KANT database.
Signature( q::qaosnumberfield )
Degree( )
# The discriminant of a number field from the KANT database.
Discriminant( q::qaosnumberfield )
# The class number of a number field from the KANT database.
ClassNumber( q::qaosnumberfield )
# The class group of a number field from the KANT database.
ClassGroup( q::qaosnumberfield )
# QaosTransitiveGroup(query::string[,limit::integer])::list(qaostransitivegroup)
# QaosTransitiveGroup([limit::integer])::list(qaostransitivegroup)
#
# Searches the QaoS transitive group database in Berlin. Returns at most
# 'limit' matches. The string 'query' is made up of terms of the form
# invariant=value, where invariant is one of:
#
# Keywords with integer values, Syntax: keyword integer
#
# d, deg, degr, degree: The degree of the transitive group
# o, ord, order: The order of the transitive group
# of, ord fac, order factor: A factor of the order of the transitive group
# n, num, numb: The number of the transitive group in the tn nomenclature
# csl, compser len, compseries length: The length of the composition series
# lcsl, lcentser len, lowercentralseries length: The length of the lower
# central series
#
# Keywords with string values, Syntax: keyword 'string'
#
# name: The name of the transitive group, either a trivial name or a name
# in the tn nomenclature
#
# Keywords with boolean values, Syntax: keyword | not keyword
#
# a ab abel abelian: The abelian property of the group
# ma metab metabel metabelian: The metabelian property of the group
# c cyc cyclic: The cyclic property of the group
# p pr prim primitive: The primitive property of the group
# si sim simp simple: The simple property of the group
# s sol solv solvable: The solvable property of the group
# ss supsol supsolv supersolvable: The supersolvable property of the group
# np nilp nilpot nilpotent: The nilpotent property of the group
#
# If value is a number then >, <, >=, <= or != can be used instead of =.
# You can omit the relation if you want it to be =.
#
# Called without an argument QaosTransitiveGroup returns more groups
# matching the previous search query.
#
# The procedure PermutationGroup converts groups from the database to
# permutation groups. The invariants of the returned groups can be accessed
# withh the procedure: GroupOrder, IsAbelian, IsMetaAbelian, IsSimple,
# IsSolvable, IsSuperSolvable, IsCyclic, IsPrimitive, IsNilpotent,
# TransitiveGroupIdentification, LengthCompositionSeries.
#
# You must have 'curl' installed and properly configured in order to use
# the database.
QaosTransitiveGroup( )
# Convert a transitive group from the QaoS database into a permutation
# group.
PermutationGroup( q::qaostransitivegroup )
GroupOrder( q::qaostransitivegroup )
IsAbelian( )
IsMetaAbelian( )
IsSimple( )
IsSolvable( )
IsSuperSolvable( )
IsCyclic( )
IsPrimitive( )
IsNilpotent( )
LengthCompositionSeries( q::qaostransitivegroup )
TransitiveGroupIdentification( q::qaostransitivegroup )
LengthLowerCentralSeries( q::qaostransitivegroup )
> |
> |
> |
> |
> |
> |
> |
> |
> |