| > |  | 
Maple interface to the QaoS databases
by Sebastian Freundt and Sebastian Pauli 
![(Typesetting:-mprintslash)([Qaos := ], [module () description](images/qaos_2.gif) 
 



 
 
| > |  | 
# Maple interface to the QaoS databases
module Qaos( )
    # QaosNumberField(query::string [,limit::integer])::list(qaosnumberfield)
    # QaosNumberField([limit::integer])::list(qaosnumberfield)
    #  
    # Searches the KANT number field database in Berlin. Returns at most 
    # 'limit' matches. The string 'query' is made up of terms of the form 
    # invariant=value, where invariant is one of:
    # 
    # degree or deg,
    # classnumber or classnum or class,
    # real signature or sig-real or rsig,
    # imaginary signature or sig-im or isig,
    # discriminant or disc,
    # regulator or reg, or
    # galoisgroup or galgrp.
    # 
    # If value is a number then >, <, >=,, <= or <> can be used instead of =. 
    # You can omit the relation if you want it to be =. The Galois group may be 
    # enclosed in single quotes, e.g. galoisgroup='S5' or galgrp is 's5'. 
    # Several terms are implied to be connected by AND, e.g. degree=3 cls 2 
    # |disc| <= 9876.
    # 
    # Called without an argument NumberFieldQuery returns more fields matching 
    # the previous search query.
    # 
    # The procedure DefiningPolynomial returns a defining polynomial of a 
    # field. The invariants of the returned fields can be accessed withh the 
    # procedure: ClassGroup, ClassNumber, Degree, Discriminant, GaloisGroup, 
    # Regulator, Signature 
    # 
    # Properties of the Galois group can be obtained with the procedures: 
    # IsAbelian, IsMetaAbelian, IsSimple, IsSolvable, IsSuperSolvable, 
    # IsCyclic, IsPrimitive, IsNilpotent
    # 
    # You must have 'curl' installed and properly configured in order to use 
    # the database.
    QaosNumberField( )
    # The defining polynomial of a number field from the KANT database.
    DefiningPolynomial( q::qaosnumberfield )
    # The regulator of a number field from the KANT database.
    Regulator( q::qaosnumberfield )
    # A name of the Galois group of a number field from the KANT database.
    GaloisGroup( q::qaosnumberfield )
    # The signature [r_1,r_2] of a number field from the KANT database.
    Signature( q::qaosnumberfield )
    Degree( )
    # The discriminant of a number field from the KANT database.
    Discriminant( q::qaosnumberfield )
    # The class number of a number field from the KANT database.
    ClassNumber( q::qaosnumberfield )
    # The class group of a number field from the KANT database.
    ClassGroup( q::qaosnumberfield )
    # QaosTransitiveGroup(query::string[,limit::integer])::list(qaostransitivegroup)
    # QaosTransitiveGroup([limit::integer])::list(qaostransitivegroup)
    # 
    # Searches the QaoS transitive group database in Berlin. Returns at most 
    # 'limit' matches. The string 'query' is made up of terms of the form 
    # invariant=value, where invariant is one of:
    # 
    # Keywords with integer values, Syntax: keyword integer
    # 
    # d, deg, degr, degree: The degree of the transitive group 
    # o, ord, order: The order of the transitive group 
    # of, ord fac, order factor: A factor of the order of the transitive group 
    # n, num, numb: The number of the transitive group in the tn nomenclature 
    # csl, compser len, compseries length: The length of the composition series 
    # lcsl, lcentser len, lowercentralseries length: The length of the lower 
    # central series
    # 
    # Keywords with string values, Syntax: keyword 'string'
    # 
    # name: The name of the transitive group, either a trivial name or a name 
    # in the tn nomenclature
    # 
    # Keywords with boolean values, Syntax: keyword | not keyword
    # 
    # a ab abel abelian: The abelian property of the group
    # ma metab metabel metabelian: The metabelian property of the group
    # c cyc cyclic: The cyclic property of the group
    # p pr prim primitive: The primitive property of the group
    # si sim simp simple: The simple property of the group
    # s sol solv solvable: The solvable property of the group
    # ss supsol supsolv supersolvable: The supersolvable property of the group
    # np nilp nilpot nilpotent: The nilpotent property of the group
    # 
    # If value is a number then >, <, >=, <= or != can be used instead of =. 
    # You can omit the relation if you want it to be =.
    # 
    # Called without an argument QaosTransitiveGroup returns more groups 
    # matching the previous search query.
    # 
    # The procedure PermutationGroup converts groups from the database to 
    # permutation groups. The invariants of the returned groups can be accessed 
    # withh the procedure: GroupOrder, IsAbelian, IsMetaAbelian, IsSimple, 
    # IsSolvable, IsSuperSolvable, IsCyclic, IsPrimitive, IsNilpotent, 
    # TransitiveGroupIdentification, LengthCompositionSeries.
    # 
    # You must have 'curl' installed and properly configured in order to use 
    # the database.
    QaosTransitiveGroup( )
    # Convert a transitive group from the QaoS database into a permutation 
    # group.
    PermutationGroup( q::qaostransitivegroup )
    GroupOrder( q::qaostransitivegroup )
    IsAbelian( )
    IsMetaAbelian( )
    IsSimple( )
    IsSolvable( )
    IsSuperSolvable( )
    IsCyclic( )
    IsPrimitive( )
    IsNilpotent( )
    LengthCompositionSeries( q::qaostransitivegroup )
    TransitiveGroupIdentification( q::qaostransitivegroup )
    LengthLowerCentralSeries( q::qaostransitivegroup )
 
| > |  | 






 
 
| > |  | 
 
 
| > |  | 
 
 
| > |  | 






 
 
| > |  | 


 
 
| > |  | 
 
 
| > | ![P := PermutationGroup(G[1]); 1](images/qaos_34.gif) | 
![(Typesetting:-mprintslash)([P := permgroup(29, {[[1, 2, 3, 7, 4, 24, 8, 14, 5, 12, 25, 27, 9, 20, 15, 29, 6, 23, 13, 11, 26, 19, 28, 22, 10, 18, 21, 17, 16]]})], [permgroup(29, {[[1, 2, 3, 7, 4, 24, 8...](images/qaos_35.gif)
![(Typesetting:-mprintslash)([P := permgroup(29, {[[1, 2, 3, 7, 4, 24, 8, 14, 5, 12, 25, 27, 9, 20, 15, 29, 6, 23, 13, 11, 26, 19, 28, 22, 10, 18, 21, 17, 16]]})], [permgroup(29, {[[1, 2, 3, 7, 4, 24, 8...](images/qaos_36.gif) 
 
| > | ; 1](images/qaos_37.gif) | 
 
 
| > |