[back] [prev] [next] [index] [root]

 


ThueSolve

Solves a Thue equation.

Syntax:

L := ThueSolve(t,a [,"exact"|"abs"]);

list
  L  
Thue object
  t  
int
  a  

See also:  Solve, Thue, ThueEval

Description:

Let f(X,Y) \in Z[X,Y] be the homogeneous polynomial of the Thue object t generated by the KASH function Thue. The ThueSolve function determines all x,y \in Z such that f(x,y) = a. \smallskip If the third argument equals "abs" the ThueSolve function will compute all x,y \in Z with |f(x,y)|=a. The calling sequence ThueSolve(t,a,"exact") is tantamount to ThueSolve(t,a). \smallskip The implementation of the ThueSolve function in {\sf KASH} bases on the algorithm of Y.Bilu and G.Hanrot BiHa.


Example:

Compute all x,y \in {Z} with x^3 + x^2 y - 6 x y^2 + 2 y^3 = 2.

kash> t := Thue([1,1,-6,2]);
X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
kash> ThueSolve(t,2);
> [ [ -724, -411 ], [ -4, -11 ], [ -3, 1 ], [ -1, -1 ], [ 0, 1 ], [ 2, 1 ] ]


<- back[back] [prev] [next] [index] [root]