[back] [prev] [next] [index] [root]
ThueSolve
Solves a Thue equation.
Syntax:
L := ThueSolve(t,a [,"exact"|"abs"]);
list |
L |
|
Thue object |
t |
|
int |
a |
|
See also: Solve, Thue, ThueEval
Description:
Let f(X,Y) \in Z[X,Y] be the homogeneous polynomial
of the Thue object t generated by the KASH
function Thue. The ThueSolve function determines all
x,y \in Z such that f(x,y) = a. \smallskip
If the third argument equals "abs" the ThueSolve
function will compute all x,y \in Z with |f(x,y)|=a.
The calling sequence ThueSolve(t,a,"exact") is
tantamount to ThueSolve(t,a). \smallskip
The implementation of the ThueSolve function in {\sf
KASH} bases on the algorithm of Y.Bilu and G.Hanrot
BiHa.
Example:
Compute all x,y \in {Z} with
x^3 + x^2 y - 6 x y^2 + 2 y^3 = 2.
kash> t := Thue([1,1,-6,2]);
X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
kash> ThueSolve(t,2);
> [ [ -724, -411 ], [ -4, -11 ], [ -3, 1 ], [ -1, -1 ], [ 0, 1 ], [ 2, 1 ] ]
<- back[back] [prev] [next] [index] [root]