[back] [prev] [next] [index] [root]

 


Thue

Creates a thue object for solving Thue equations.

Syntax:

t := Thue(o);
t := Thue(L);
t := Thue(f);

Thue object
  t  
order
  o  
list
  L  
polynomial
  f  

See also:  ThueEval, ThueSolve

Description:

One classical object of number theory is the Diophantine equation of Thue f(X,Y) = a, where f(X,Y) \in {Z}[X,Y] is a homogeneous polynomial of degree n <= 3 and a is an integer. \smallskip Before solving a Thue equation in KASH the form f on the left side has to be created by invoking the {\tt Thue} function. \bigskip Thue(o) takes the coefficients of the form from the polynomial defining the order o.\medskip Thue(L) takes the coefficients from the list L.\medskip Thue(f) takes the coefficients from the polynomial f.


Example:

Create the Thue object corresponding to the form f(X,Y) = X^3 + X^2 Y - 6 X Y^2 + 2 Y^3.

kash> o := Order(Poly(Zx,[1,1,-6,2]));
Generating polynomial: x^3 + x^2 - 6*x + 2

kash> t := Thue(o);
X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
kash> L := [1,1,-6,2];
[ 1, 1, -6, 2 ]
kash> t := Thue(L);
X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
kash> f := Poly(Zx,[1,1,-6,2]);
x^3 + x^2 - 6*x + 2
kash> t := Thue(f);
> X^3 + X^2 Y - 6 X Y^2 + 2 Y^3


<- back[back] [prev] [next] [index] [root]