[back] [prev] [next] [index] [root]
Thue
Creates a thue object for solving Thue equations.
Syntax:
t := Thue(o);
t := Thue(L);
t := Thue(f);
Thue object |
t |
|
order |
o |
|
list |
L |
|
polynomial |
f |
|
See also: ThueEval, ThueSolve
Description:
One classical object of number theory is the Diophantine
equation of Thue
f(X,Y) = a,
where f(X,Y) \in {Z}[X,Y] is a homogeneous
polynomial of degree n <= 3 and a is an integer. \smallskip
Before solving a Thue equation in KASH the form f
on the left side has to be created by invoking the {\tt
Thue} function. \bigskip
Thue(o)
takes the coefficients of the form from the polynomial defining
the order o.\medskip
Thue(L)
takes the coefficients from the list L.\medskip
Thue(f)
takes the coefficients from the polynomial f.
Example:
Create the Thue object corresponding to the form
f(X,Y) = X^3 + X^2 Y - 6 X Y^2 + 2 Y^3.
kash> o := Order(Poly(Zx,[1,1,-6,2]));
Generating polynomial: x^3 + x^2 - 6*x + 2
kash> t := Thue(o);
X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
kash> L := [1,1,-6,2];
[ 1, 1, -6, 2 ]
kash> t := Thue(L);
X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
kash> f := Poly(Zx,[1,1,-6,2]);
x^3 + x^2 - 6*x + 2
kash> t := Thue(f);
> X^3 + X^2 Y - 6 X Y^2 + 2 Y^3
<- back[back] [prev] [next] [index] [root]