[back] [prev] [next] [index] [root]

 


RayResidueRingToAbelianGroup

Returns the ray residue ring modulo a congruence module.

Syntax:

g := RayResidueRingToAbelianGroup(m0 [, minf]);

group
  g  
ideal
  m0  
list of integers
  minf  
infinite primes

See also:  RayResidueRing

Description:

Returns the multiplicative group g of the ray residue ring modulo a congruence module. For more information see \hyperlink{RayResidueRing}{ RayResidueRing}.


Example:


kash> o := OrderMaximal(Poly(Zx, [1,6,2]));
Generating polynomial: x^2 + 6*x + 2
Discriminant: 28 

kash> m0 := Ideal(Elt(o, [0,3]));
<[0, 3]>
kash> g := RayResidueRingToAbelianGroup(m0, [1,2]);
> Group with relations:
[2 0 0 0]
[0 2 0 0]
[0 0 2 0]
[0 0 0 2]


<- back[back] [prev] [next] [index] [root]