[back] [prev] [next] [index] [root]

 


RayResidueRingCyclicFactors

Returns generators (and their orders) for the multiplicative group of the residue class ring of an ideal or a congruence module, as computed by RayResidueRing.

Syntax:

L := RayResidueRingCyclicFactors(m0 [,minf]);

list
  L  
ideal
  m0  
list
  minf  
of integers/infinite primes

See also:  EltCon, IdealRayClassRep, OrderClassGroup, RayClassGroup

Description:

A list containing generators and their orders is computed. This structure can be used to solve multiplicative congruences which may involve infinite places.


Example:


kash> O := OrderMaximal(Order(Z,2,10));;
kash> m0 := 7^3*O;; minf := [1,2];;
kash> L := RayResidueRingCyclicFactors(m0,minf);
[ [ [243657, 43632], 48 ], [ 15, 49 ], [ [48021, 357], 49 ], [ [1, 343], 2 ], 
  [ [1, -343], 2 ] ]
kash> EltRayResidueRingRep(L[1][1],m0,minf);
[1 0 0 0 0]
kash> EltCon(L[1][1]);
[105680.50113153327298622427686931162493674837016097 381633.498868466727013775\
72313068837506325162983903]
kash> EltRayResidueRingRep(L[2][1]^2*L[3][1],m0,minf);
[0 2 1 0 0]
kash> EltRayResidueRingRep(L[4][1],m0,minf);
[0 0 0 1 0]
kash> L[4][1] mod m0;
1
kash> EltRayResidueRingRep(L[2][1]^2*L[3][1]*L[4][1],m0,minf);
> [0 2 1 1 0]


<- back[back] [prev] [next] [index] [root]