[back] [prev] [next] [index] [root]
L := RayResidueRingCyclicFactors(m0 [,minf]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, IdealRayClassRep, OrderClassGroup, RayClassGroup
kash> O := OrderMaximal(Order(Z,2,10));; kash> m0 := 7^3*O;; minf := [1,2];; kash> L := RayResidueRingCyclicFactors(m0,minf); [ [ [243657, 43632], 48 ], [ 15, 49 ], [ [48021, 357], 49 ], [ [1, 343], 2 ], [ [1, -343], 2 ] ] kash> EltRayResidueRingRep(L[1][1],m0,minf); [1 0 0 0 0] kash> EltCon(L[1][1]); [105680.50113153327298622427686931162493674837016097 381633.498868466727013775\ 72313068837506325162983903] kash> EltRayResidueRingRep(L[2][1]^2*L[3][1],m0,minf); [0 2 1 0 0] kash> EltRayResidueRingRep(L[4][1],m0,minf); [0 0 0 1 0] kash> L[4][1] mod m0; 1 kash> EltRayResidueRingRep(L[2][1]^2*L[3][1]*L[4][1],m0,minf); > [0 2 1 1 0]
<- back[back] [prev] [next] [index] [root]