[back] [prev] [next] [index] [root]
L := RayResidueRing(m0 [,minf]);
list | L |
|
ideal | m0 |
|
list | minf |
of integers/infinite primes |
See also: EltCon, EltRayResidueRingRep, RayResidueRingRepToElt, RayResidueRingCyclicFactors
kash> O := OrderMaximal(Order(Z,2,10)); Generating polynomial: x^2 - 10 Discriminant: 40 kash> P3 := Factor(3*O)[1][1];; kash> IdealDegree(P3); 1 kash> IdealRamIndex(P3); 1 kash> m0 := P3^2;; L := RayResidueRing(m0); [ 6, [ 2, 3 ] ] kash> m0 := P3^4;; L := RayResidueRing(m0); [ 54, [ 2, 27 ] ] kash> P5 := Factor(5*O)[1][1];; kash> IdealDegree(P5); 1 kash> IdealRamIndex(P5); 2 kash> m0 := P5^2;; L := RayResidueRing(m0); [ 20, [ 4, 5 ] ] kash> m0 := P5^4;; L := RayResidueRing(m0); [ 500, [ 4, 25, 5 ] ] kash> P7 := 7*O;; kash> IdealDegree(P7); 2 kash> IdealRamIndex(P7); 1 kash> m0 := P7^2;; RayResidueRing(m0); [ 2352, [ 48, 7, 7 ] ] kash> m0 := P7^4;; RayResidueRing(m0); [ 5647152, [ 48, 343, 343 ] ] kash> m0 := P5^4*P7^2;; L := RayResidueRing(m0); [ 1176000, [ 4, 25, 5, 48, 7, 7 ] ] kash> minf := [2];; L := RayResidueRing(1*O,minf); [ 2, [ 1, 2 ] ] kash> L := RayResidueRing(m0,minf); [ 2352000, [ 4, 25, 5, 48, 7, 7, 2 ] ]
kash> a := ZIdealCreate(9); <9> kash> RayResidueRing(a); [ 6, [ 6 ] ]
<- back[back] [prev] [next] [index] [root]