[back] [prev] [next] [index] [root]

 


RayClassGroupToAbelianGroup

Returns the ray class group for a congruence module.

Syntax:

g := RayClassGroupToAbelianGroup(m0 [, minf] [, rels | expo]);

group
  g  
ideal
  m0  
list of integers
  minf  
infinite primes
matrix of integers
  rels  
gives additional relations for a quotient
integer
  expo  
equivalent to rels = expo*MatId.

See also:  RayClassGroup

Description:

Returns the ray class group for a congruence module as an abstract group g. For more information see \hyperlink{RayClassGroup}{RayClassGroup}.


Example:


kash> o := OrderMaximal(x^2+6*x+2);
Generating polynomial: x^2 + 6*x + 2
Discriminant: 28 

kash> m0 :=Elt(o, [0,3])*o;
<[0, 3]>
kash> g := RayClassGroupToAbelianGroup(m0, [1,2]);
> RayClassGroupToAbelianGroup(<[0, 3]>, [ 1, 2 ])
Group with relations:
[2 0]
[0 2]


<- back[back] [prev] [next] [index] [root]