[back] [prev] [next] [index] [root]

 


RayCantoneseRemainder

missing shortdoc

Syntax:

elt := RayCantoneseRemainder(m0,minf,elt0,sig);

ideal
  m0  
list of integers/infinite primes
  minf  
algebraic number
  elt0  
list
  sig  
algebraic number
  elt  

See also:  EltApproximation, EltCon, IdealChineseRemainder, OrderSig, RayResidueRing

Description:

Returns an algebraic number elt, which is congruent to elt0 \pmod { m0} and whose real conjugates have the signature as chosen by sig at the places of minf. The algorithm is described in Pau1. sig is a vector/matrix, which consists of 0's and 1's. A 1 in the i'th position means that elt has a negative conjugate at the i'th place of minf (which must be sorted!), a 0 means that it has positive conjugate.


Example:


kash> O := OrderMaximal(Z,4,5);
   F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^4 - 5
Discriminant: -2000 

kash> m0 := 12*O;; minf := [1,2];;
kash> elt0 := Elt(O,[1,2,3,4]);;sig := [1,0];;IsMat(sig);;
kash> elt := RayCantoneseRemainder(m0,minf,elt0,sig);
[5029, -2590, 3591, -2300]
kash> elt mod m0;
[1, 2, 3, 4]
kash> EltCon(elt);
> [-5910.979315905677215736970806158202922913622694351555 12964.7430748579057138\
0121401249028054286746099661 640.118120523885750967878396833961190023080848871\
131 - 1747.347688152938188731912066849790464428137141477991*i 640.118120523885\
750967878396833961190023080848871131 + 1747.3476881529381887319120668497904644\
28137141477991*i]


<- back[back] [prev] [next] [index] [root]