[back] [prev] [next] [index] [root]

 


OrderUnitsPFund

Computes the p maximal overgroup of the units in the given order.

Syntax:

OrderUnitsPFund (O,p);

order
  O  
rational prime
  p  

See also:  OrderUnitsFund

Description:

The given absolute order O must be maximal. This function computes the p maximal overgroup of the units given in O. If no units have been computed so far, an arbitrary system of independent units is computed in advance. For further information we refer the reader to Wi1.


Example:

Let rho be a root of t^3+15 t^2 + 15 t + 15. We consider the order {Z}[rho], which is already maximal with signature [1,1].\newline 2729 + 573 rho + 27 rho ^2 is a unit in this order.

kash> O := OrderMaximal(Order(Poly(Zx,[1,15,15,15])));
Generating polynomial: x^3 + 15*x^2 + 15*x + 15
Discriminant: -110700 

kash> a := Elt(O,[2729, 573, 27]);
[2729, 573, 27]
kash> OrderUnitsMerge(O,a);
true
kash> OrderReg(O);
15.630874731280170083241764717443071385772563284107
kash> OrderUnitsPFund(O,2);
[ [2729, 573, 27] ]
kash> OrderUnitsPFund(O,3);
[ [-14, -1, 0] ]
kash> OrderReg(O);
> 5.210291577093390027747254905814357128590623830734


<- back[back] [prev] [next] [index] [root]