[back] [prev] [next] [index] [root]

 


OrderUnitsEquation

Solves a unit equation.

Syntax:

L := OrderUnitsEquation (alpha,beta,gamma);
L := OrderUnitsEquation (alpha,beta);

list
  L  
algebraic elements
  alpha, beta, gamma  

See also:  OrderUnitsExcep

Description:

Let \alpha,\beta,\gamma be non-zero elements of a certain order o. We denote by \U the unit group of o. The OrderUnitsEquation function computes all (\varepsilon_1,\varepsilon_2) \in \U\times \U satisfying \alpha cdot \varepsilon_1 + \beta cdot \varepsilon_2 = \gamma. If the third argument is omitted, \gamma = 1 is used by default.


Example:

Compute all units \varepsilon_1,\varepsilon_2 \in Z[\sqrt[4]{5}] with 1 cdot \varepsilon_1 + 2 cdot \varepsilon_2 = 3.

kash> o := Order(Z,4,5);
Generating polynomial: x^4 - 5

kash> one := Elt(o,1);
1
kash> OrderUnitsEquation(one,2*one,3*one);
> [ [ 1, 1 ] ]


<- back[back] [prev] [next] [index] [root]