[back] [prev] [next] [index] [root]
OrderUnitsEquation
Solves a unit equation.
Syntax:
L := OrderUnitsEquation (alpha,beta,gamma);
L := OrderUnitsEquation (alpha,beta);
list |
L |
|
algebraic elements |
alpha, beta, gamma |
|
See also: OrderUnitsExcep
Description:
Let \alpha,\beta,\gamma be non-zero elements of a certain
order o. We denote by \U the unit group of o.
The OrderUnitsEquation function computes all
(\varepsilon_1,\varepsilon_2) \in \U\times \U satisfying
\alpha cdot \varepsilon_1 + \beta cdot \varepsilon_2
= \gamma.
If the third argument is omitted, \gamma = 1 is used by default.
Example:
Compute all units \varepsilon_1,\varepsilon_2
\in Z[\sqrt[4]{5}] with 1 cdot \varepsilon_1 + 2 cdot
\varepsilon_2 = 3.
kash> o := Order(Z,4,5);
Generating polynomial: x^4 - 5
kash> one := Elt(o,1);
1
kash> OrderUnitsEquation(one,2*one,3*one);
> [ [ 1, 1 ] ]
<- back[back] [prev] [next] [index] [root]