[back] [prev] [next] [index] [root]

 


OrderTorsionUnitRank

Returns the number of roots of unity in the given order.

Syntax:

r := OrderTorsionUnitRank(o);

integer
  r  
number of roots of unity
order
  o  

See also:  OrderTorsionUnit, OrderSetTorsionUnit

Description:

o must be an absolute order. OrderTorsionUnitRank returns the number of roots of unity in the order o, the rank of the stored generator of the roots of unity in the order o.


Example:

Compute the number of roots of unity in {Z}[\sqrt{-3}] and in {Z}[frac{1+\sqrt{-3}}{2}]

kash> o := Order(Z,2,-3);
Generating polynomial: x^2 + 3

kash> O := OrderMaximal(o);
   F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^2 + 3
Discriminant: -3 

kash> OrderTorsionUnitRank(o);
2
kash> OrderTorsionUnitRank(O);
> 6


<- back[back] [prev] [next] [index] [root]