[back] [prev] [next] [index] [root]

 


OrderSimplify

Returns the given order in a simplified representation.

Syntax:

o1 := OrderSimplify(o);

order
  o1  
order
  o  

See also:  OrderTransformationMatrix, Order

Description:

The order is simplified in the sense that the number of suborders might be reduced.


Example:

Simplification of an order.

kash> o := Order (Poly(Zx,[1,0,73,-280, -2399]));
Generating polynomial: x^4 + 73*x^2 - 280*x - 2399

kash> M1 := Mat (Z, [[2,0,-1,-2],[0,2,-1,0],[0,0,1,0],[0,0,0,1]]);
[ 2  0 -1 -2]
[ 0  2 -1  0]
[ 0  0  1  0]
[ 0  0  0  1]
kash> M2 := Mat (Z, [[823,0,0,-409],[0,823,0,-789],[0,0,823,-28],[0,0,0,1]]);
[ 823    0    0 -409]
[   0  823    0 -789]
[   0    0  823  -28]
[   0    0    0    1]
kash> o := Order (o, M1, 2);
   F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^4 + 73*x^2 - 280*x - 2399

kash> o := Order (o, M2, 823);
   F[1]
    |
   F[2]
    |
   F[3]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     Given by transformation matrix
F  [ 3]     x^4 + 73*x^2 - 280*x - 2399

kash> O := OrderSimplify (o);
>    F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^4 + 73*x^2 - 280*x - 2399



<- back[back] [prev] [next] [index] [root]