[back] [prev] [next] [index] [root]

 


OrderShortAbs

Creates an absolute extension from a simple relative extension and tries to find a "good" primitive polynomial for the given order.

Syntax:

Oa := OrderShortAbs(O);

order
  Oa  
order
  O  

See also:  OrderShort, OrderAbs

Description:

Given a simple relative order O - the coefficient ring ( OrderCoefOrder) of the coefficient ring of O is {\Bbb Z} - this function computes an absolute equation order O|a with quotient field isomorphic to the quotient field of O over Q. At the same time this algorithm tries to find a polynomial for which the corresponding equation order is of small index.


Example:

The following example creates the absolute extension of a relative extension:

kash> o:=OrderMaximal(x^2 + 19*x + 11);
Generating polynomial: x^2 + 19*x + 11
Discriminant: 317 

kash> ox:=PolyAlg(o);
Univariate Polynomial Ring in x over Generating polynomial: x^2 + 19*x + 11
Discriminant: 317 

kash> O:=Order(Poly(ox,[1,-18,-6]));
      F[1]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     x^2 - 18*x - 6
E 1[ 1]     x^2 + 19*x + 11

kash> Oa:=OrderShortAbs(O);
>    F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^4 - 2*x^3 - 331*x^2 + 332*x - 23



<- back[back] [prev] [next] [index] [root]