[back] [prev] [next] [index] [root]
L := OrderRelUnits(o [,S | I] [,"raw"]);
list | L |
of L1, T, hs or L2, hs |
list | L1 |
of algebraic integers |
list | L2 |
of S-units |
matrix | T |
transformation matrix |
integer | hs |
S-class number |
order | o |
|
list | S |
of pairwise distinct prime ideals. |
ideal | I |
See also: OrderSUnits
kash> o:= Order(Poly(Zx,[1,1,1,1,1])); Generating polynomial: x^4 + x^3 + x^2 + x + 1 kash> zeta:= Elt(o,[0,1,0,0]); [0, 1, 0, 0] kash> ox:=PolyAlg(o); Univariate Polynomial Ring in x over Generating polynomial: x^4 + x^3 + x^2 + \ x + 1 kash> O:= Order(Poly(ox,[1,0,-zeta,0,zeta^2])); F[1] / / E1[1] / / Q F [ 1] x^4 + [0, -1, 0, 0]*x^2 + [0, 0, 1, 0] E 1[ 1] x^4 + x^3 + x^2 + x + 1 kash> I:=31*o; <31> kash> m:=OrderRelUnits(O,I); > [ [ [0, [-2, -2, -1, -1], 0, [0, 1, 0, -1]], [0, [-1, -1, -1, 0], 0, [-1, -1, -2, -1]], [[0, -1, 0, 0], [0, 0, -1, -1], [1, 1, 1, 0], [0, 1, 1, 1]], [-1, [0, 0, 1, 0], [0, 0, -1, 0], [0, -1, 0, -1]], [[-1, -1, -1, -1], [0, 1, 0, 0], [0, 0, 0, -1], -1], [[-1, 0, -1, 0], [1, 0, 0, 1], [-1, -1, -1, -1], [0, 0, -1, 0]], [[-10, -19, -24, -44], 0, [-14, -8, 16, -12], 0] / 31, [[17, 10, 22, -3], 0, [-4, -37, -7, -23], 0] / 31, [[-66, -67, -137, -77], 0, [6, -39, -58, -117], 0] / 31, [[-19, -26, 84, 56], 0, [27, -43, -59, -91], 0] / 31 ], [ [[0, 0, 1, 1], 0, [-1, -1, -1, 0], 0], [0, [0, -1, -1, 1], 0, [2, 1, 1, 1]], [[-49, -38, -43, -52], 0, [27, -5, 18, -15], 0] / 31, [[-2, -18, 71, 8], 0, [34, -4, 33, 81], 0] / 31, [[-13, 69, -19, -103], 0, [66, 67, 137, -16], 0] / 31 ] ]
<- back[back] [prev] [next] [index] [root]