[back] [prev] [next] [index] [root]
L := OrderRelUnits(o [,S | I] [,"raw"]);
| list | L |
of L1, T, hs or L2, hs |
| list | L1 |
of algebraic integers |
| list | L2 |
of S-units |
| matrix | T |
transformation matrix |
| integer | hs |
S-class number |
| order | o |
|
| list | S |
of pairwise distinct prime ideals. |
| ideal | I |
See also: OrderSUnits
kash> o:= Order(Poly(Zx,[1,1,1,1,1]));
Generating polynomial: x^4 + x^3 + x^2 + x + 1
kash> zeta:= Elt(o,[0,1,0,0]);
[0, 1, 0, 0]
kash> ox:=PolyAlg(o);
Univariate Polynomial Ring in x over Generating polynomial: x^4 + x^3 + x^2 + \
x + 1
kash> O:= Order(Poly(ox,[1,0,-zeta,0,zeta^2]));
F[1]
/
/
E1[1]
/
/
Q
F [ 1] x^4 + [0, -1, 0, 0]*x^2 + [0, 0, 1, 0]
E 1[ 1] x^4 + x^3 + x^2 + x + 1
kash> I:=31*o;
<31>
kash> m:=OrderRelUnits(O,I);
> [ [ [0, [-2, -2, -1, -1], 0, [0, 1, 0, -1]],
[0, [-1, -1, -1, 0], 0, [-1, -1, -2, -1]],
[[0, -1, 0, 0], [0, 0, -1, -1], [1, 1, 1, 0], [0, 1, 1, 1]],
[-1, [0, 0, 1, 0], [0, 0, -1, 0], [0, -1, 0, -1]],
[[-1, -1, -1, -1], [0, 1, 0, 0], [0, 0, 0, -1], -1],
[[-1, 0, -1, 0], [1, 0, 0, 1], [-1, -1, -1, -1], [0, 0, -1, 0]],
[[-10, -19, -24, -44], 0, [-14, -8, 16, -12], 0] / 31,
[[17, 10, 22, -3], 0, [-4, -37, -7, -23], 0] / 31,
[[-66, -67, -137, -77], 0, [6, -39, -58, -117], 0] / 31,
[[-19, -26, 84, 56], 0, [27, -43, -59, -91], 0] / 31 ],
[ [[0, 0, 1, 1], 0, [-1, -1, -1, 0], 0],
[0, [0, -1, -1, 1], 0, [2, 1, 1, 1]],
[[-49, -38, -43, -52], 0, [27, -5, 18, -15], 0] / 31,
[[-2, -18, 71, 8], 0, [34, -4, 33, 81], 0] / 31,
[[-13, 69, -19, -103], 0, [66, 67, 137, -16], 0] / 31 ] ]
<- back[back] [prev] [next] [index] [root]