[back] [prev] [next] [index] [root]

 


OrderReg

Returns the regulator of the current maximal system of independent units.

Syntax:

x := OrderReg(o);
x := OrderReg(o,"classgroup");
x := OrderReg(o, reg);

real
  x  
order
  o  
real
  reg  

See also:  OrderRegLowBound, OrderUnitsFund, OrderUnitsIndep

Description:

Let o be an absolute order with unit rank r \ge 1.


Example:

Let O denote the maximal order of Q(rho), where rho^4 + 73 rho^2 - 280 rho - 2399 = 0. First, we compute the regulator of a maximal system of independent units in O.

kash> O := OrderMaximal (Poly(Zx,[1,0,73,-280,-2399]));
   F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^4 + 73*x^2 - 280*x - 2399
Discriminant: -997975 

kash> OrderUnitsIndep (O);
[ [0, 0, 1, -1], [109589, -13889, 743946, -766419] ]
kash> OrderReg (O); 
12.399824579954190488548880525089080810892337788058


Example:

Next we compute the regulator of a fundamental system of units in O.

kash> OrderUnitsFund (O);
[ [-1, 0, -1, 1], [-253011, -13889, 519847, -542320] ]
kash> OrderReg (O); 
12.39982457995419048854888052508908081089233778807


Example:

From this result we find that the system of independent units which we had computed in the first step was fundamental. \bigskip Finally, we set the regulator of the maximal order to 12.4:

kash> OrderReg (O, 12.4);
12.4
kash> OrderReg (O);
> 12.4


<- back[back] [prev] [next] [index] [root]