[back] [prev] [next] [index] [root]
OrderIndexFormEquation
Solves an index form equation.
Syntax:
L := OrderIndexFormEquation(o,index);
list |
L |
|
order |
o |
|
integer |
index |
|
See also: EltIndex
Description:
Let o be an order over Z. We say that algebraic integers
a, b \in o are Z-equivalent iff a - b or a + b is
a rational integer. The OrderIndexFormEquation
function computes a full set of pairwise inequivalent
\alpha \in o such that the module index
(o:Z[\alpha]) equals index. Note that this set
is always finite due to a result of K.~Gy\H{o}ry.\medskip
At present, the OrderIndexFormEquation function can
only handle cubic and quartic fields. Algorithms are taken
from GaPePo1,GaPePo2,GaSch.
Example:
Compute - up to Z-equivalence - all generators of power
integral bases of
Z[\sqrt[3]{2}] :
kash> o := Order(Z,3,2);
Generating polynomial: x^3 - 2
kash> OrderIndexFormEquation(o,1);
> [ [0, 1, 0], [0, 1, 1] ]
<- back[back] [prev] [next] [index] [root]