[back] [prev] [next] [index] [root]

 


OrderIndexFormEquation

Solves an index form equation.

Syntax:

L := OrderIndexFormEquation(o,index);

list
  L  
order
  o  
integer
  index  

See also:  EltIndex

Description:

Let o be an order over Z. We say that algebraic integers a, b \in o are Z-equivalent iff a - b or a + b is a rational integer. The OrderIndexFormEquation function computes a full set of pairwise inequivalent \alpha \in o such that the module index (o:Z[\alpha]) equals index. Note that this set is always finite due to a result of K.~Gy\H{o}ry.\medskip At present, the OrderIndexFormEquation function can only handle cubic and quartic fields. Algorithms are taken from GaPePo1,GaPePo2,GaSch.


Example:

Compute - up to Z-equivalence - all generators of power integral bases of Z[\sqrt[3]{2}] :

kash> o := Order(Z,3,2);
Generating polynomial: x^3 - 2

kash> OrderIndexFormEquation(o,1);
> [ [0, 1, 0], [0, 1, 1] ]


<- back[back] [prev] [next] [index] [root]