[back] [prev] [next] [index] [root]

 


OrderIndex

Returns the index of the given order relative to its suborder.

Syntax:

I := OrderIndex(o);

integer
  I  
order
  o  

See also:  OrderDisc

Description:

This function returns the index of the suborder o|1 of o in o. The index equals \sqrt{disc(o|1) / disc(o)}. In the absolute case the index is a rational integer, otherwise it is an ideal. If o has no suborder 1 resp. the ideal generated by the coefficient order is returned.


Example:

Computing and checking the index of a maximal order.

kash> o := Order (Poly (Zx,[1,0,-186,0,13097,0,-412704,0,4946176]));
Generating polynomial: x^8 - 186*x^6 + 13097*x^4 - 412704*x^2 + 4946176

kash> OrderIndex (o);
1
kash> O := OrderMaximal (o);
   F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^8 - 186*x^6 + 13097*x^4 - 412704*x^2 + 4946176
Discriminant: 60050488100625 

kash> OrderIndex (O);
117012089012224
kash> OrderDisc (o) / OrderDisc (O) - OrderIndex (O)^2;
> 0


<- back[back] [prev] [next] [index] [root]