[back] [prev] [next] [index] [root]
OrderExcepSequence
Computes a sequence of exceptional units of maximal length
in a given order.
Syntax:
L := OrderExcepSequence (o);
list |
L |
exceptional sequence |
order |
o |
|
See also: OrderUnitsExcep
Description:
Let o be an order over Z and let
omega_1, … ,omega_m \;(m \ge 2) be a sequence of
elements of o. We say that this sequence is an
exceptional sequence if omega_1 = 0, omega_2 = 1 and all
the mutual differences omega_i - omega_j \;(1 \le i < j
\le m) are units. Note that for such an exceptional
sequence the elements omega_3, … ,omega_m are
exceptional units in the terminology of T.~Nagell
Nag.\smallskip
The OrderExcepSequence function returns an exceptional
sequence of maximal length.
Example:
Compute an exceptional sequence of maximal length
in Z[zeta_7] :
kash> o := Order(Poly(Zx,[1,1,1,1,1,1,1]));
Generating polynomial: x^6 + x^5 + x^4 + x^3 + x^2 + x + 1
kash> OrderExcepSequence(o);
> [ 0, 1, [3, 0, 2, 1, 1, 2], [0, -1, 0, -1, 0, -1], [0, 0, -1, 0, 0, -1],
[1, 0, 1, 0, 0, 1], [-2, 0, -2, -1, -1, -2] ]
<- back[back] [prev] [next] [index] [root]