[back] [prev] [next] [index] [root]

 


OrderExcepSequence

Computes a sequence of exceptional units of maximal length in a given order.

Syntax:

L := OrderExcepSequence (o);

list
  L  
exceptional sequence
order
  o  

See also:  OrderUnitsExcep

Description:

Let o be an order over Z and let omega_1, … ,omega_m \;(m \ge 2) be a sequence of elements of o. We say that this sequence is an exceptional sequence if omega_1 = 0, omega_2 = 1 and all the mutual differences omega_i - omega_j \;(1 \le i < j \le m) are units. Note that for such an exceptional sequence the elements omega_3, … ,omega_m are exceptional units in the terminology of T.~Nagell Nag.\smallskip The OrderExcepSequence function returns an exceptional sequence of maximal length.


Example:

Compute an exceptional sequence of maximal length in Z[zeta_7] :

kash> o := Order(Poly(Zx,[1,1,1,1,1,1,1]));
Generating polynomial: x^6 + x^5 + x^4 + x^3 + x^2 + x + 1

kash> OrderExcepSequence(o);
> [ 0, 1, [3, 0, 2, 1, 1, 2], [0, -1, 0, -1, 0, -1], [0, 0, -1, 0, 0, -1], 
  [1, 0, 1, 0, 0, 1], [-2, 0, -2, -1, -1, -2] ]


<- back[back] [prev] [next] [index] [root]