[back] [prev] [next] [index] [root]
OrderCoefIdeals
Returns the list of coefficient ideals of a relative order.
Syntax:
L := OrderCoefIdeals(o);
list of ideals |
L |
|
relative order |
o |
|
See also: OrderBasis
Description:
Let o be a relative order over a maximal order O.
Then o can be represented via a pseudo basis:
o = \a|1 \xi|1 + … + \a|n \xi|n where
the \a|i are O-ideals and the \xi|i (possibly fractional)
elements of O.
The \a|i are the coefficient ideals (returned by this function),
the \xi|i are the basis elements (returned by OrderBasis).
Returns an error if the order is not relative.
Example:
The coefficient ideals of a relative maximal order.
kash> O := OrderMaximal(Z, 2, 10);
Generating polynomial: x^2 - 10
Discriminant: 40
kash> o := OrderMaximal(O, 2, 5);
F[1]
|
F[2]
/
/
E1[1]
/
/
Q
F [ 1] Given by transformation matrix
F [ 2] x^2 - 5
E 1[ 1] x^2 - 10
Discriminant: <1>
Coef. Ideals are: <1>, <1, [5, 1] / 10>
kash> OrderCoefIdeals(o);
> [ <1>, <1, [5, 1] / 10> ]
<- back[back] [prev] [next] [index] [root]