[back] [prev] [next] [index] [root]

 


OrderCoefIdeals

Returns the list of coefficient ideals of a relative order.

Syntax:

L := OrderCoefIdeals(o);

list of ideals
  L  
relative order
  o  

See also:  OrderBasis

Description:

Let o be a relative order over a maximal order O. Then o can be represented via a pseudo basis: o = \a|1 \xi|1 + … + \a|n \xi|n where the \a|i are O-ideals and the \xi|i (possibly fractional) elements of O. The \a|i are the coefficient ideals (returned by this function), the \xi|i are the basis elements (returned by OrderBasis). Returns an error if the order is not relative.


Example:

The coefficient ideals of a relative maximal order.

kash> O := OrderMaximal(Z, 2, 10);
Generating polynomial: x^2 - 10
Discriminant: 40 

kash> o := OrderMaximal(O, 2, 5);
      F[1]
       |
      F[2]
        /
       /
   E1[1]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^2 - 5
E 1[ 1]     x^2 - 10
Discriminant: <1> 
Coef. Ideals are: <1>, <1, [5, 1] / 10>

kash> OrderCoefIdeals(o);
> [ <1>, <1, [5, 1] / 10> ]


<- back[back] [prev] [next] [index] [root]