[back] [prev] [next] [index] [root]

 


OrderBasisIsPower

Returns true iff the given order is an equation order.

Syntax:

B := OrderBasisIsPower(o);

boolean
  B  
order
  o  

See also:  OrderBasisIsRel, OrderEquationOrder

Description:

OrderBasisIsPower checks whether in the actual KANT-representation a given order o is an equation order or not. It does not check whether a given order could be represented as an equation order.


Example:

Check, whether or not a certain order is an equation order.

kash> o := Order (Poly (Zx,[1,0,-186,0,13097,0,-412704,0,4946176]));
Generating polynomial: x^8 - 186*x^6 + 13097*x^4 - 412704*x^2 + 4946176

kash> O := OrderMaximal (o);
   F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^8 - 186*x^6 + 13097*x^4 - 412704*x^2 + 4946176
Discriminant: 60050488100625 

kash> OrderBasisIsPower (O);
false
kash> OrderBasisIsPower (OrderEquationOrder (O));
> true


<- back[back] [prev] [next] [index] [root]