[back] [prev] [next] [index] [root]

 


ModuleSmith

Computes the structure of the quotient module.

Syntax:

L :=ModuleSmith(M1, M2, ["U" | "V" | "UV" );

modules
  M1, M2  
integer
  d  
used for reduction
ideal
  I  
used for reduction

See also:  ModuleConcat, ModuleNF

Description:

no detailed description available yet


Example:

kash>  O:=OrderMaximal(Poly(Zx, [1,-10,-3,-2]));;
kash> o:=OrderMaximal(O,3,3);;
kash> Oa:=OrderMaximal(OrderAbs(o));;
kash> L:=List(Factor(10*Oa),i->i[1]);;
kash> M1:=IdealBasis(IdealMove(L[2]*L[6], o));
{<10, [26, 1, 0]><2, [0, 0, 1]><1>
[1 -2 -1]
[0 1 1]
[0 0 1]
}

kash> M2:=IdealBasis(IdealMove(L[1]*L[6], o));
{<10, [-12714, -20615, -67306]><1><1>
[1 3 1]
[0 1 0]
[0 0 1]
}

kash> ModuleIntersection(M1,M2);
> {<10, [88, 2, 99]><2, [0, 2, 1]><2, [2, 2, 1]>
[1 -2 -1]
[0 1 1]
[0 0 1]
}



<- back[back] [prev] [next] [index] [root]