[back] [prev] [next] [index] [root]

 


ModuleOrder

Retrieves the order over which the module is defined.

Syntax:

o := ModuleOrder(M);

order
  o  
module
  M  

See also:  Module

Description:

no detailed description available yet


Example:


kash> O:=OrderMaximal(Poly(Zx,[1, 5, -6, -53, 3, 206, 244]));;
kash> IL:=List(Factor(2*O),f->f[1]);;
kash> List(IL,IdealGenerators);;
kash> EL1:=List(Factor(5*O),f->IdealGen(f[1],2));;
kash> EL2:=List(Factor(13*O),f->IdealGen(f[1],2));;
kash> EL2[3]:=IdealGen(Factor(7*O)[1][1],2);;
kash> EL3:=List(Factor(3*O),f->IdealGen(f[1],2));;
kash> EL3[3]:=IdealGen(Factor(7*O)[2][1],2);;
kash> M:=Module(IL,Mat(O,[EL1,EL2,EL3]));
{<2, [0, 2, 0, 3, 0, 2]><2, [0, 0, 3, 0, 1, 2]><2, [3, 3, 1, 2, 0, 0]>
[[12, 17, 15, 7, 9, 5] [19, 18, 15, 1, 10, 24] [4, 22, 4, 10, 23, 4]]
[[10, 8, 0, 1, 0, 0] [1, 12, 5, 1, 0, 0] [1, 1, 0, 0, 0, 0]]
[[1, 1, 0, 0, 0, 0] [1, 0, 1, 0, 0, 0] [3, 1, 0, 0, 0, 0]]
}

kash> ModuleOrder(M);
>    F[1]
    |
   F[2]
  /
 /
Q
F  [ 1]     Given by transformation matrix
F  [ 2]     x^6 + 5*x^5 - 6*x^4 - 53*x^3 + 3*x^2 + 206*x + 244
Discriminant: -182099043 



<- back[back] [prev] [next] [index] [root]