[back] [prev] [next] [index] [root]

 


ModuleModul

Returns an ideal which can be used for reduction.

Syntax:

a := ModuleModul(M)

ideal
  a  
module
  M  

See also:  ModuleDet, ModuleDen

Description:

Let R be a Dedekind ring, n \in \N, M \subset Q(R)^n be a module of degree n over the ring R. The ideal \a guarantees \a R^n \subset M where R^n denotes the 1-module of degree n over R. It is computed as follows: Let d be the denominator of M, \a := frac{1}{d}\det(dM).


Example:

kash>  O:=OrderMaximal(Poly(Zx, [1,-10,-3,-2]));;
kash> o:=OrderMaximal(O,3,3);;
kash> Oa:=OrderMaximal(OrderAbs(o));;
kash> L:=List(Factor(10*Oa),i->i[1]);;
kash> M:=IdealBasis(IdealMove(L[2]*L[6]/2, o));
{<5, [4, 1, 2] / 2><1, [2, 3, 2] / 2><1 / 2>
[1 -2 -1]
[0 1 1]
[0 0 1]
}

kash> I := ModuleModul(M);
<
[20  6  4]
[ 0  1  0]
[ 0  0  1]
/16>

kash> I*ModuleId(O,3) < M;
> false


<- back[back] [prev] [next] [index] [root]