[back] [prev] [next] [index] [root]

 


ModuleMatrix

Retrieves the matrix of the module representation.

Syntax:

m := ModuleMatrix(M);

matrix
  m  
module
  M  

See also:  Module

Description:

The module is represented by a pseudomatrix over a Dedekind ring and consists of a matrix and a list of ideals (one for each column). See description of Module for details. If the module is a zero module false is returned.


Example:


kash> O:=OrderMaximal(Poly(Zx,[1, 5, -6, -53, 3, 206, 244]));;
kash> IL:=List(Factor(2*O),f->f[1]);;
kash> List(IL,IdealGenerators);;
kash> EL1:=List(Factor(5*O),f->IdealGen(f[1],2));;
kash> EL2:=List(Factor(13*O),f->IdealGen(f[1],2));;
kash> EL2[3]:=IdealGen(Factor(7*O)[1][1],2);;
kash> EL3:=List(Factor(3*O),f->IdealGen(f[1],2));;
kash> EL3[3]:=IdealGen(Factor(7*O)[2][1],2);;
kash> M:=Module(IL,Mat(O,[EL1,EL2,EL3]));
{<2, [0, 2, 0, 3, 0, 2]><2, [0, 0, 3, 0, 1, 2]><2, [3, 3, 1, 2, 0, 0]>
[[12, 17, 15, 7, 9, 5] [19, 18, 15, 1, 10, 24] [4, 22, 4, 10, 23, 4]]
[[10, 8, 0, 1, 0, 0] [1, 12, 5, 1, 0, 0] [1, 1, 0, 0, 0, 0]]
[[1, 1, 0, 0, 0, 0] [1, 0, 1, 0, 0, 0] [3, 1, 0, 0, 0, 0]]
}

kash> ModuleMatrix(M);
> [[12, 17, 15, 7, 9, 5] [19, 18, 15, 1, 10, 24] [4, 22, 4, 10, 23, 4]]
[[10, 8, 0, 1, 0, 0] [1, 12, 5, 1, 0, 0] [1, 1, 0, 0, 0, 0]]
[[1, 1, 0, 0, 0, 0] [1, 0, 1, 0, 0, 0] [3, 1, 0, 0, 0, 0]]


<- back[back] [prev] [next] [index] [root]