[back] [prev] [next] [index] [root]
M1 := Module([IL,] M); M1 := Module(EL);
| module | M1 |
|
| list | IL |
of ideals over a maximal order O |
| matrix | M |
of algebraic elements over O |
| list | EL |
of relative algebraic elements of o |
See also: ModuleIdeals, ModuleMatrix, ModuleOrder
kash> O:=OrderMaximal(Poly(Zx,[1, 5, -6, -53, 3, 206, 244]));;
kash> IL:=List(Factor(2*O),f->f[1]);;
kash> List(IL,IdealGenerators);
[ [ 2, [0, 2, 0, 3, 0, 2] ], [ 2, [0, 0, 3, 0, 1, 2] ],
[ 2, [3, 3, 1, 2, 0, 0] ] ]
kash> EL1:=List(Factor(5*O),f->IdealGen(f[1],2));
[ [12, 17, 15, 7, 9, 5], [19, 18, 15, 1, 10, 24], [4, 22, 4, 10, 23, 4] ]
kash> EL2:=List(Factor(13*O),f->IdealGen(f[1],2));
[ [10, 8, 0, 1, 0, 0], [1, 12, 5, 1, 0, 0] ]
kash> EL2[3]:=IdealGen(Factor(7*O)[1][1],2);
[1, 1, 0, 0, 0, 0]
kash> EL3:=List(Factor(3*O),f->IdealGen(f[1],2));
[ [1, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0] ]
kash> EL3[3]:=IdealGen(Factor(7*O)[2][1],2);
[3, 1, 0, 0, 0, 0]
kash> M:=Module(IL,Mat(O,[EL1,EL2,EL3]));
> {<2, [0, 2, 0, 3, 0, 2]><2, [0, 0, 3, 0, 1, 2]><2, [3, 3, 1, 2, 0, 0]>
[[12, 17, 15, 7, 9, 5] [19, 18, 15, 1, 10, 24] [4, 22, 4, 10, 23, 4]]
[[10, 8, 0, 1, 0, 0] [1, 12, 5, 1, 0, 0] [1, 1, 0, 0, 0, 0]]
[[1, 1, 0, 0, 0, 0] [1, 0, 1, 0, 0, 0] [3, 1, 0, 0, 0, 0]]
}
<- back[back] [prev] [next] [index] [root]