[back] [prev] [next] [index] [root]
b := IsAlffDivisor(D);
boolean | b |
|
arbitrary object | D |
See also: IsAlffPlace, IsBound, Unbind
kash> AlffInit(FF(2,4)); "Defining global variables: k, w, kT, kTf, kTy, T, y, AlffGlobals" kash> F := Alff(y^3+T^3*y+T); Algebraic function field defined by .1^3 + .1*.2^3 + .2 over Univariate rational function field over GF(2^4) Variables: T kash> P := AlffPlaceSplit(F, T+1)[1]; Alff place < [ T + 1, 0, 0 ] > kash> IsAlffDivisor(P); false kash> D := AlffDivisor(P); Alff divisor [ [ Alff place < [ T + 1, 0, 0 ] >, 1 ] ] kash> IsAlffDivisor(D); > true
<- back[back] [prev] [next] [index] [root]