[back] [prev] [next] [index] [root]

 


InftyQuotRem

Computes quotient and remainder with respect to the degree valuation.

Syntax:

L := InftyQuotRem(a, b);

list
  L  
of q and r
quotient field elements
  a,b  

See also:  InftyVal, InftyGcd, InftyLcm

Description:

Let a, b \in FF_q(x). The function computes q, r \in FF_q(x) such that a = qb + r and \nu_\infty(q) >= 0. The rest r is chosen such that r = \sum_{i=\nu_\infty(a)}^{\nu_\infty(b)-1} c_i x^{-i} and c_i \in FF_q. By these conditions q, r are uniquely determined.


Example:


kash> k := FF(5, 2);
Finite field of size 5^2
kash> kx := PolyAlg(k);
Univariate Polynomial Ring in x over GF(5^2)

kash> x := Poly(kx, [1,0]);
x
kash> a := x + 2 + 3/x + 4/x^2;
(x^3 + 2*x^2 + 3*x + 4)/x^2
kash> InftyQuotRem(a, x);
[ (x^3 + 2*x^2 + 3*x + 4)/x^3, 0 ]
kash> InftyQuotRem(a, x/x);
[ (2*x^2 + 3*x + 4)/x^2, x ]
kash> InftyQuotRem(a, 1/x);
[ (3*x + 4)/x, x + 2 ]
kash> InftyQuotRem(a, 1/x^2);
[ 4, (x^2 + 2*x + 3)/x ]
kash> InftyQuotRem(a, 1/x^3);
[ 0, (x^3 + 2*x^2 + 3*x + 4)/x^2 ]


<- back[back] [prev] [next] [index] [root]