[back] [prev] [next] [index] [root]

 


IdealValuation

Computes the valuation of an ideal at a prime ideal.

Syntax:

val := IdealValuation(p, I);

ideal
  P  
must be prime
ideal
  I  
integer
  val  

See also:  IdealFactor

Description:

Consider the factorization of I in prime ideals. This function returns the exponent of P in the factorization (possibly 0). The prime ideal must not be an index divisor. The ideal may be fractional, see IdealFactor for interpretation. This function is only implemented for ideals over absolute orders.


Example:


kash> O := OrderMaximal (Order (Poly (Zx,[1,6,6,6])));
Generating polynomial: x^3 + 6*x^2 + 6*x + 6
Discriminant: -1836 

kash> P := Factor(5*O)[1][1];
<5, [1, 1, 0]>
kash> IdealValuation (P, Elt (O, [5,5,5])*O);
1
kash> P := Factor(2*O)[1][1];
<2, [0, 1, 0]>
kash> IdealValuation (P, Elt (O, [8,8,8])*O);
9
kash> IdealValuation (P, 2*O);
> 3


<- back[back] [prev] [next] [index] [root]