[back] [prev] [next] [index] [root]

 


IdealResidueField

Returns the finite field defined by a prime ideal.

Syntax:

K := IdealResidueField(p);

ideal
  p  
finite field
  K  

See also:  IdealResidueFieldIsomorphism, EltToFFE, FFEToElt, RayResidueRing

Description:

The field can be written as O / {\goth{p}}, where {\goth{p}} is the prime ideal and O the defining order.


Example:


kash> O := OrderMaximal(Order(Poly(Zx,[1,4,1,-4,-3,7])));
Generating polynomial: x^5 + 4*x^4 + x^3 - 4*x^2 - 3*x + 7
Discriminant: 28442269 

kash> p := Factor(7*O)[1][1];
<7, [0, 1, 0, 0, 0]>
kash> IdealResidueField(p);
Finite field of size 7
kash> a := Elt (O, [1,234,54,57,4]);
[1, 234, 54, 57, 4]
kash> EltToFFE (a, p);
1
kash> a := Elt (O, [4,234,54,57,4]);
[4, 234, 54, 57, 4]
kash> b:=EltToFFE (a, p);
4
kash> TYPE (b);
> "KANT finite field elt"


<- back[back] [prev] [next] [index] [root]