[back] [prev] [next] [index] [root]
a := IdealMakeInvCoprime(I1,I2);
| ideals | A, B |
must be integral |
| algebraic number | a |
See also: IdealMakeCoprime
kash> O := OrderMaximal(Order(Poly(Zx,[1,-2,57,-56,602])));
F[1]
|
F[2]
/
/
Q
F [ 1] Given by transformation matrix
F [ 2] x^4 - 2*x^3 + 57*x^2 - 56*x + 602
Discriminant: 529984
kash> LP := List(Factor(210*O), x->x[1]);
[ <2, [0, 1, 0, 0]>, <2, [1, 1, 0, 0]>, <3, [1, 0, 1, 0]>, <3, [2, 1, 1, 0]>,
<5, [3, 0, 1, 0]>, <5, [4, 3, 1, 0]>, <7, [0, 1, 0, 0]>, <7, [6, 1, 0, 0]> ]
kash> A := LP[1]^2*LP[3]*LP[6];
<
[30 0 4 17]
[ 0 30 18 2]
[ 0 0 1 0]
[ 0 0 0 1]
>
kash> B := LP[1]^2*LP[4]*LP[5];
<
[30 0 8 17]
[ 0 30 10 28]
[ 0 0 1 0]
[ 0 0 0 1]
>
kash> c := IdealMakeInvCoprime(A,B);
[-195, -206, 11, -7]
kash> D := c/A;
<
[-195 -382 -67 -26]
[-206 -442 -88 -103]
[ 11 -555 99 -92]
[ -7 724 -376 -9]
>
kash> IdealIdempotents([D,B]);
> [ 1623181771, -1623181770 ]
<- back[back] [prev] [next] [index] [root]