[back] [prev] [next] [index] [root]

 


IdealDegree

Calculates the degree of inertia of a prime ideal.

Syntax:

d := IdealDegree(I);

integer
  d  
ideal
  I  
must be prime

See also:  IdealRamIndex

Description:

Let O be a maximal order. Let p be a prime number and \p a prime O-ideal over this prime number p. The index [ O/\p : Z|p ] is called the degree of inertia of \p over p.


Example:


kash> O := OrderMaximal(Order(Poly(Zx,[1,4,1,-4,-3,7])));
Generating polynomial: x^5 + 4*x^4 + x^3 - 4*x^2 - 3*x + 7
Discriminant: 28442269 

kash> I := 6*O;
<6>
kash> p := Factor(I)[2][1];
<2, [1, 0, 0, 1, 1]>
kash> IdealDegree(p);
> 4


<- back[back] [prev] [next] [index] [root]