[back] [prev] [next] [index] [root]
M := IdealCollection(I1,I2);
list | M |
two lists of two elements of the order |
ideals | I1,I2 |
integral, over a maximal order |
See also: ModuleSteinitz
kash> O := OrderMaximal(Poly(Zx, [1, 6, 6, 6]));; kash> I1:=Ideal(6,Elt(O,[0,0,1])); <6, [0, 0, 1]> kash> I2:=Ideal(3,Elt(O,[0,1,1])); <3, [0, 1, 1]> kash> M := IdealCollection(I1,I2); [ [ [0, 0, 1], 0 ], [ -1, [0, 5, 1] / 6 ] ] kash> M[1][1]*M[2][2]-M[1][2]*M[2][1]; 1 kash> a1 := Elt(O,[2,1,0]); [2, 1, 0] kash> a2 := Elt(O,[0,1,-1]); [0, 1, -1] kash> b1 := a1 * M[1][1] + a2 * M[1][2];; kash> b2 := a1 * M[2][1] + a2 * M[2][2];; kash> a1*I1+a2*I2 = b1*O+b2*I1*I2; > true
<- back[back] [prev] [next] [index] [root]