[back] [prev] [next] [index] [root]

 


IdealCollection

Solves a special equation.

Syntax:

M := IdealCollection(I1,I2);

list
  M  
two lists of two elements of the order
ideals
  I1,I2  
integral, over a maximal order

See also:  ModuleSteinitz

Description:

Let \alpha|1, \alpha|2 be two algebraic numbers and {\goth{I}}|1, {\goth{I}}|2 two ideals over the same order O. The result of this function is a matrix M which satisfies \alpha|1 {\goth{I}}|1 + \alpha|2 {\goth{I}}|2 = \beta|1 O + \beta|2 {\goth{I}}|1 {\goth{I}}|2 where {\beta|1choose\beta|2}= {\alpha|1choose\alpha|2} M.


Example:


kash> O := OrderMaximal(Poly(Zx, [1, 6, 6, 6]));;
kash> I1:=Ideal(6,Elt(O,[0,0,1]));
<6, [0, 0, 1]>
kash> I2:=Ideal(3,Elt(O,[0,1,1]));
<3, [0, 1, 1]>
kash> M := IdealCollection(I1,I2);
[ [ [0, 0, 1], 0 ], [ -1, [0, 5, 1] / 6 ] ]
kash> M[1][1]*M[2][2]-M[1][2]*M[2][1];
1
kash> a1 := Elt(O,[2,1,0]);
[2, 1, 0]
kash> a2 := Elt(O,[0,1,-1]);
[0, 1, -1]
kash> b1 := a1 * M[1][1] + a2 * M[1][2];;
kash> b2 := a1 * M[2][1] + a2 * M[2][2];;
kash> a1*I1+a2*I2 = b1*O+b2*I1*I2;
> true


<- back[back] [prev] [next] [index] [root]