[back] [prev] [next] [index] [root]

 


IdealClassRep

Computes a representation of the ideal class over the cyclic generators of the class group.

Syntax:

L := IdealClassRep(I);
L := IdealClassRep(I, "gen");

list
  L  
ideal
  I  

See also:  OrderClassGroup, IdealIsPrincipal, IdealRayClassRep

Description:

If {\goth{a}}|1, … , {\goth{a}}|k are the cyclic generators of the class group as returned by {\tt OrderClassGroupCyclicFactors}, for an ideal \goth{b} this function computes a representation of the form {\goth{b}} = \alpha \prod|{i=1}^k {\goth{a}}|i^{s|i} with \alpha an algebraic element. The result is stored in a list of the form { \alpha, { {\goth{a}}|1 , s|1 }, … , { {\goth{a}}|k, s|k } }, where \alpha is omitted when the second parameter "gen" is not given.


Example:


kash> o := OrderMaximal(Order(x^3-117));;
kash> OrderClassGroup(o, euler);
[ 3, [ 3 ] ]
kash> OrderClassGroupCyclicFactors(o);
[ [ <2, [1, 1, 3]>, 3 ] ]
kash> p := Factor(1021*o)[1][1];
<1021, [499, 1, 0]>
kash> L := IdealClassRep(p, "gen");
[ [287, 59, 36] / 2, [ <2, [1, 1, 3]>, 1 ] ]
kash> alpha := L[1];
[287, 59, 36] / 2
kash> a1 := L[2][1];
<2, [1, 1, 3]>
kash> s1 := L[2][2];
1
kash> alpha*a1^s1/p;
> <
[1 0 0]
[0 1 0]
[0 0 1]
>



<- back[back] [prev] [next] [index] [root]