[back] [prev] [next] [index] [root]

 


IdealChineseRemainder

Chinese Remainder Theorem for number fields

Syntax:

beta := IdealChineseRemainder(a1, a2, alpha1, alpha2)

ideals
  a1, a2  
algebraic numbers
  alpha1, alpha2  
algebraic number
  beta  

See also:  EltApproximation, RayCantoneseRemainder

Description:

Computes an algebraic number \beta in the order o, such that \alpha|i - \beta is contained in the ideal \a|i, i = 1,2.


Example:


kash> O := OrderMaximal (Order (Poly(Zx,[1,0,73,-280,-2399])));;
kash> a1 := Factor (2*O)[1][1];
<2, [1, 2, 0, 1]>
kash> a2 := Factor (NextPrime (4343343)*O)[1][1];
<4343357, [1353610, 1860090, 2, 0]>
kash> beta := IdealChineseRemainder (a1, a2, Elt (O,[1,2,3,5]), Elt (O, 4));
[4, 4343357, 0, 0]
kash> Valuation (a1, beta - Elt (O,[1,2,3,5]));
2
kash> Valuation (a2, beta - Elt (O,4));
> 1


<- back[back] [prev] [next] [index] [root]