[back] [prev] [next] [index] [root]
g:= GaloisMSumPol(f, k);
int | k |
must be positive |
polynomial | f,g |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
kash> o := OrderMaximal(Z, 2, 2); Generating polynomial: x^2 - 2 Discriminant: 8 kash> ox := PolyAlg(o); Univariate Polynomial Ring in x over Generating polynomial: x^2 - 2 Discriminant: 8 kash> f := Poly(ox, [Elt(o,1), Elt(o,[74,-16] / 73), Elt(o,[5988,-2368] > / 5329), Elt(o, [160667739, -69612720] / 133432831), Elt(o, > [98807254537, -54032137568] / 68184176641)]); x^4 + [74, -16] / 73*x^3 + [5988, -2368] / 5329*x^2 + [160667739, -69612720] /\ 133432831*x + [98807254537, -54032137568] / 68184176641 kash> g := GaloisMSumPol(f,2); > x^6 + (222/73*.1 - 48/73*.2)*x^5 + (29940/5329*.1 - 11840/5329*.2)*x^4 + (\ 2594440/389017*.1 - 1355200/389017*.2)*x^3 + (42642475310/68184176641*.1 - \ 42196712560/68184176641*.2)*x^2 + (-16578528081908/4977444894793*.1 + 988909\ 5753408/4977444894793*.2)*x - 35497382888701141/17804320388674561*.1 + 22361\ 191523984800/17804320388674561*.2
<- back[back] [prev] [next] [index] [root]