[back] [prev] [next] [index] [root]
GaloisGlobals(o);
order | o |
See also: Galois, GaloisTree, GaloisRoots
kash> o := Order(Z, 12, 2); Generating polynomial: x^12 - 2 kash> GaloisT(o, "complex", 150); 28 kash> GaloisGlobals(o); ******* galois globals begin ******* degree is: 12 polynomial is: x^12 - 2 Fields are: Galois ring of type real over Complex Field of precision 152 gg_p_bound is: 100 gg_tschirn is: 0 gg_num_groups is: 301 gg_prec is: 150 ******* galois globals end ******* kash> o := Order(Z, 12, 2); Generating polynomial: x^12 - 2 kash> GaloisT(o); 28 kash> GaloisGlobals(o); > ******* galois globals begin ******* degree is: 12 polynomial is: x^12 - 2 Fields are: Galois ring of type padic over Generating polynomial: x^2 - 3 for p = 17, k = 4, m = 48661191875666868481 gg_p_bound is: 100 gg_tschirn is: 0 gg_num_groups is: 301 gg_prec is: 0 ******* galois globals end *******
<- back[back] [prev] [next] [index] [root]