[back] [prev] [next] [index] [root]
Galois
Computation of Galois groups.
Syntax:
Galois ( f [,p] [, "fast"] );
Galois ( o [,p] [, "fast"] );
Galois ( f , "complex" [, n] );
Galois ( o , "complex" [, n] );
GaloisT ( f [,p] [, "fast"] );
GaloisT ( o [,p] [, "fast"] );
GaloisT ( f , "complex" [, n] );
GaloisT ( o , "complex" [, n] );
polynomial |
f |
|
order |
o |
|
prime number |
p |
|
positive integer |
n |
precision |
See also: GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks
Description:
This function computes the Galois group of an irreducible
polynomial with coefficients in Q and with degree up to 23.
The first two callings are a p-adic version of the method of
Stauduhar.
The optional integer p gives the prime number to be used for
the p-adic computations. Not using the parameter "fast"
the p-adic version returns a proven result.
The optional parameter "fast" is able
to speed up the computation considerably, but incorrect results
may occure. The option "fast" makes use of lower bounds
during the inclusion test of a Galois group computation.
The next two callings are the complex version of the method of
Stauduhar. The optional integer n gives the precision to be used.
The minimal precision is 100. \medskip
Galois() returns the name of the Galois group
whereas
GaloisT() returns its number in T-notation as
classified in \medskip GAP GAP.
The implementation of the Galois function Ge1 in KASH\
bases on the algorithm of R.P.Stauduhar
Stau.
Example:
kash> Galois(x^12-2);
"D(4)[x]S(3)"
kash> o := Order(Z, 12, 2);
Generating polynomial: x^12 - 2
kash> GaloisModulo(o, 100);
[ 28, 81, 83, 86, 125, 134, 141, 143, 156, 185, 186, 193, 208, 209, 213, 217,
222, 239, 240, 248, 250, 258, 260, 267, 268, 270, 274, 281, 283, 288, 289,
292, 293, 294, 299, 301 ]
kash> f := x^15 + 2*x^9 - 5*x^6 + 2*x^3 - 1;
x^15 + 2*x^9 - 5*x^6 + 2*x^3 - 1
kash> GaloisT(f);
> 61
<- back[back] [prev] [next] [index] [root]