[back] [prev] [next] [index] [root]

 


Galois

Computation of Galois groups.

Syntax:

Galois ( f [,p] [, "fast"] );
Galois ( o [,p] [, "fast"] );

Galois ( f , "complex" [, n] );
Galois ( o , "complex" [, n] );

GaloisT ( f [,p] [, "fast"] );
GaloisT ( o [,p] [, "fast"] );

GaloisT ( f , "complex" [, n] );
GaloisT ( o , "complex" [, n] );

polynomial
  f  
order
  o  
prime number
  p  
positive integer
  n  
precision

See also:  GaloisGlobals, GaloisGroupsPossible, GaloisModulo, GaloisTree, GaloisRoots, GaloisNumberToName, GaloisBlocks

Description:

This function computes the Galois group of an irreducible polynomial with coefficients in Q and with degree up to 23. The first two callings are a p-adic version of the method of Stauduhar. The optional integer p gives the prime number to be used for the p-adic computations. Not using the parameter "fast" the p-adic version returns a proven result. The optional parameter "fast" is able to speed up the computation considerably, but incorrect results may occure. The option "fast" makes use of lower bounds during the inclusion test of a Galois group computation. The next two callings are the complex version of the method of Stauduhar. The optional integer n gives the precision to be used. The minimal precision is 100. \medskip Galois() returns the name of the Galois group whereas GaloisT() returns its number in T-notation as classified in \medskip GAP GAP. The implementation of the Galois function Ge1 in KASH\ bases on the algorithm of R.P.Stauduhar Stau.


Example:


kash> Galois(x^12-2);
"D(4)[x]S(3)"
kash> o := Order(Z, 12, 2);
Generating polynomial: x^12 - 2

kash> GaloisModulo(o, 100);
[ 28, 81, 83, 86, 125, 134, 141, 143, 156, 185, 186, 193, 208, 209, 213, 217, 
  222, 239, 240, 248, 250, 258, 260, 267, 268, 270, 274, 281, 283, 288, 289, 
  292, 293, 294, 299, 301 ]
kash> f := x^15 + 2*x^9 - 5*x^6 + 2*x^3 - 1;
x^15 + 2*x^9 - 5*x^6 + 2*x^3 - 1
kash> GaloisT(f);
> 61


<- back[back] [prev] [next] [index] [root]