[back] [prev] [next] [index] [root]

 


EltToFFE

Returns the class of an algebraic element viewed as an element of a finite field.

Syntax:

f := EltToFFE( a, p);

integer or algebraic element
  a  
prime ideal
  p  
finite field element or integer
  f  
interpreted as finite field element

See also:  IdealResidueField, IdealResidueFieldIsomorphism, FFEToElt

Description:

This is the canonical homomorphism O rightarrow O / {\goth{p}}. The prime ideal must not lie over a number which divides the discriminant of the generating polynomial of O.


Example:


kash> O := OrderMaximal(Order(Poly(Zx,[1,4,1,-4,-3,7])));
Generating polynomial: x^5 + 4*x^4 + x^3 - 4*x^2 - 3*x + 7
Discriminant: 28442269 

kash> p := Factor(7*O)[1][1];
<7, [0, 1, 0, 0, 0]>
kash> b := Elt(O,[3, 1,5,1,8]);
[3, 1, 5, 1, 8]
kash> EltToFFE(b, p);
> 3


<- back[back] [prev] [next] [index] [root]